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Theorem 1. Let g = gcd(r, s), p = s/g and N = (N0, · · · , Ng−1). The unnormalized colored Jones
polynomial of the zero framed (i; r, s)-cabling of a banded link L with c components can be expressed as
follows:
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Figure 1. We have drawn the link L4
1;3, the (1; 3, 4)-cabling of L = (L1, L2), where L1 is the figure eight

knot and L2 is an unknot. We have indicated the torus braid B4
3 and the opened tangle T1;3 mentioned in

section 2.
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The above theorem works with a banded link or ribbon link L so that every component is an embedded
annulus. Given a diagram D of a banded link inside an annulus we can construct a satellite of L by embedding
D into a component Li of L. The (r, s)-cabling operation is the special case where we take D to be the
closure of the (r, s)-torus braid Br

s = (σ1 · · ·σs−1)r, where r ∈ Z, s ∈ N. To turn Br
s into a banded tangle

we use the blackboard framing and add a positive curl to every overpassing arc, see Figure 1 above. The
banded link obtained by (r, s)-cabling the component Li of a banded link L will be denoted by Lr

i;s, we will
also call it the (i; r, s)-cabling of L.

In the above cabling formula we used to the following coefficients. For a vector N = (n0, . . . , ng−1) define(
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We also made use of the notation |N| = N0 + . . . + Ng−1 and the convention that

JM1,...,Mi−1,−j,...,Mc(L)(q) = −JM1,...,Mi−1,j,...,Mc(L)(q)

Theorem 2. Let Or
s be a zero framed iterated torus knot with cabling parameters (r, s) = (rk, sk)K

k=1.
a. Let X = (Xk)K

k=1, X0 = 0 and r′k = rk − rk−1sk−1sk. Supposing q = eh and h /∈ 2πi
N Z, we have
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where Q is the following quadratic form:
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and the contour C is a real K–dimensional plane such that Xk−sXk−1 ∈ Reφki for some φk satisfying
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b. Let m $= 0 be an integer.
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