LECTURE NOTES ASYMPTOTICS OF SPIN NETWORKS
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Definition 0.1. A quantum spin network (I',~) consists of a knotted ribbon graph T (i.e., an embedded graph
in 3-space, of arbitrary valency, together with a cyclic ordering of the edges around each vertex), together
with a coloring 7 : Edges(T') — N

Everything is expressed in terms of the Kauffman bracket. Set A* = ¢. Recall that quantum integer n]
and the balanced quantum factorial [n]! is defined by
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Definition 0.2. (a) We say a quantum spin network is admissible when the sum of the three labels a,, by, ¢,
around every vertex v is even and a,, by, ¢, satisfy the triangle inequalities: |a, — by| < ¢, < @y + by
(b) The evaluation (I',)¥ of a quantum spin network (I',~) is defined to be zero if it is not admissible. An
admissible quantum spin network is evaluated by the following algorithm.

e Use the cyclic ordering to thicken the vertices into disks and the edges into untwisted bands.

e Replace each vertex v by the pattern shown in Figure 1 and replace each edge by the linear combi-

nation of braids as shown.
e Finally the resulting linear combination of links is evaluated using the Kauffman bracket.
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Figure 1. The rules for evaluating a quantum spin network. Replace vertices and edges to get a linear
combination of links that is evaluated using the Kauffman bracket. Here b is the label of the edge, and for
any permutation o we denote by (3, the unique negative permutation braid corresponding to . By ¢(c) we
mean the minimal length of o written as a product of transpositions.

(S) The standard normalization of a quantum spin network is defined by
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Here 71 = [T,y r [2otfctoe]1 [2ectyebn]) [antlymsa
(KL) We define the Kauffman-Lins normalization (T',v)%% to be
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(U) We define the unitary normalization (I',7)Y to be
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Figure 2. The formulas of recoupling theory. d(c;a,b) = (—1)
Kronecker delta function.
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b) Let ( A\,7) denote a tetrahedron labeled by v = (a,b,c,d, e, f) such that a is opposite to d, ¢ to b and
a, b, e makes a vertex. Then we have
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where the S; and T} are given by
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