Volume conjecture of colored Jones polynomials

Jinseok Cho (joint work with Jun Murakami)

Waseda University, JSPS fellow

January 15, 2010

Jinseok Cho (Waseda University)

Colored Jones polynomial

January 15, 2010 1 / 54

Conjecture (Volume conjecture of Kashaev invariant)

$$\operatorname{vol}(L) = 2\pi \lim_{N \to \infty} \frac{\log |\langle L \rangle_N|}{N},$$

where L is a hyperbolic link, vol(L) is the hyperbolic volume, $\langle L \rangle_N$ is the Kashaev invariant.

Conjecture (Complexified volume conjecture)

$$i(\operatorname{vol}(L) + i\operatorname{cs}(L)) \equiv 2\pi i \lim_{N \to \infty} \frac{\log \langle L \rangle_N}{N} \pmod{\pi^2},$$

where cs(L) is the Chern-Simons invariant of the cusped manifold $S^3 \setminus L$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Yokota)

For a hyperbolic knot K,

$$\operatorname{vol}(\mathcal{K}) = \operatorname{Im} \left\{ 2\pi i \operatorname{o-lim}_{N \to \infty} \frac{\log \langle \mathcal{K} \rangle_N}{N} \right\}$$

Theorem (Yokota, to appear) For a hyperbolic knot K,

$$i(\operatorname{vol}(K) + i\operatorname{cs}(K)) \equiv 2\pi i \operatorname{o-lim}_{N \to \infty} \frac{\log \langle K \rangle_N}{N} \pmod{\pi^2}.$$

Jinseok Cho (Waseda University)

/□ ▶ 《 ⋽ ▶ 《 ⋽

Theorem (H. Murakami and J. Murakami(2001)) For a knot K,

$$\langle K \rangle_N = J_N\left(K; \exp(\frac{2\pi i}{N})\right)$$

where $J_N(K; u)$ is the N-th colored Jones polynomial of the knot K evaluated at $u \in \mathbb{C}$.

Theorem (Ohnuki(2005))

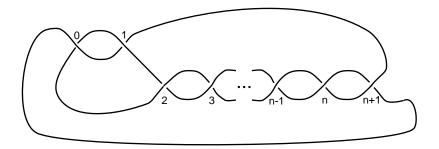
For a two-bridge knot K,

$$\operatorname{vol}(\mathcal{K}) = -\operatorname{Im} \left\{ 2\pi i \operatorname{o-lim}_{N \to \infty} \frac{\log J_N\left(\mathcal{K}; \exp\left(\frac{2\pi i}{N}\right)\right)}{N} \right\}.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let T_n $(n \ge 3)$ be the twist knot with n + 2 crossings as below.



< 4 ∰ > <

Main Theorem

Let $q := \exp(\frac{2\pi i}{N})$ for an integer $N \ge 2$.

Conjecture (Volume conjecture of colored Jones polynomial) For a hyperbolic link L,

$$i(\operatorname{vol}(L) + i\operatorname{cs}(L)) \equiv -2\pi i \operatorname{o-lim}_{N \to \infty} \frac{\log J_N(L;q)}{N} \pmod{\pi^2}.$$

Theorem (Cho and J. Murakami(2010))
For a twist knot
$$T_n$$
,
 $i(\operatorname{vol}(T_n) + i\operatorname{cs}(T_n)) \equiv -2\pi i \operatorname{o-lim}_{N \to \infty} \frac{\log J_N(T_n; q)}{N} \pmod{\pi^2}$.

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Contents

- Colored Jones polynomial
- Optimistic limit of colored Jones polynomial
- Complex volume of T_n
- Application to Yokota theory

1. Colored Jones polynomial

イロト イヨト イヨト

Definition of $\mathcal{U}_q(sl_2(\mathbb{C}))$

The quantum group $\mathcal{U}_q(sl_2(\mathbb{C}))$ is a finite dimensional algebra over \mathbb{C} with generators X, Y, K, K^{-1} and relations

$$KK^{-1} = K^{-1}K = 1, KX = q^{1/2}XK, KY = q^{-1/2}YK,$$

 $XY - YX = \frac{K - K^{-1}}{q^{1/2} - q^{-1/2}}, X^N = Y^N = 0, K^{4N} = 1.$

 $\mathcal{U}_q(\mathit{sl}_2(\mathbb{C}))$ has a Hopf algebra structure by

$$\begin{split} \Delta(X) &= X \otimes K + K^{-1} \otimes X, \ \Delta(Y) = Y \otimes K + K^{-1} \otimes Y, \\ \Delta(K^{\pm 1}) &= K^{\pm 1} \otimes K^{\pm 1}, \\ S(X) &= -q^{1/2}X, \ S(Y) = -q^{-1/2}Y, \ S(K^{\pm 1}) = K^{\mp 1}, \\ \epsilon(X) &= \epsilon(Y) = 0, \ \epsilon(K^{\pm 1}) = 1 \end{split}$$

where Δ is the comultiplication, S is the antipode and ϵ is the counit.

Representation of $\mathcal{U}_q(sl_2(\mathbb{C}))$

Let V^r be the *r*-dimensional vector space over \mathbb{C} with basis $\{e_0, e_1, \ldots, e_{r-1}\}$ for $r \leq N$. Also let $[n] := \frac{q^{k/2} - q^{-k/2}}{q^{1/2} - q^{-1/2}}$ for a nonnegative integer *n*. Then we define the action of $\mathcal{U}_q(sl_2(\mathbb{C}))$ by

$$\begin{array}{rcl} X \cdot e_{j} & = & \left\{ \begin{array}{ll} [j+1]e_{j+1} & \text{if } j < r-1, \\ 0 & \text{if } j = r-1, \end{array} \right. \\ Y \cdot e_{j} & = & \left\{ \begin{array}{ll} [j]e_{j-1} & \text{if } j > 0, \\ 0 & \text{if } j = 0, \end{array} \right. \\ \mathcal{K} \cdot e_{j} & = & q^{j/2 - (r-1)/4}e_{j}. \end{array} \end{array}$$

Therefore V^r becomes an irreducible $\mathcal{U}_q(sl_2(\mathbb{C}))$ -module. Because $\mathcal{U}_q(sl_2(\mathbb{C}))$ is a Hopf algebra, $(V^r)^*$ and $V^r \otimes V^{r'}$ also become $\mathcal{U}_q(sl_2(\mathbb{C}))$ -modules. We put the dual basis of $(V^r)^*$ to be $\{e^0, e^1, \ldots, e^{r-1}\}$.

R-matrix

Let
$$[n]! := [n][n-1]...[1]$$
 and $[0]! := 1$. The element

$$R = \frac{1}{4N} \sum_{n,a,b} \frac{(q^{1/2} - q^{-1/2})}{[n]!} q^{-(ab-an+bn+n)/4} X^n K^a \otimes Y^n K^b$$

in $\mathcal{U}_q(sl_2(\mathbb{C})) \otimes \mathcal{U}_q(sl_2(\mathbb{C}))$, where the sum is over all $0 \le n < r$ and $0 \le a, b < 4r$, is the universal R-matrix for $\mathcal{U}_q(sl_2(\mathbb{C}))$. For vectors $v \in V^r$ and $w \in V^{r'}$, we define module homomorphisms

$$P(v \otimes w) := w \otimes v,$$

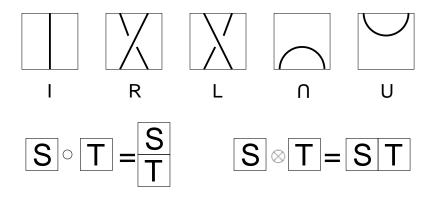
$$\check{R}(v \otimes w) = P(R \cdot v \otimes w).$$

Then

$$(\check{R} \otimes \mathrm{id})(\mathrm{id} \otimes \check{R})(\check{R} \otimes \mathrm{id}) = (\mathrm{id} \otimes \check{R})(\check{R} \otimes \mathrm{id})(\mathrm{id} \otimes \check{R})$$

holds, i.e. Yang-Baxter equation holds.

Elementary tangle diagrams with operations

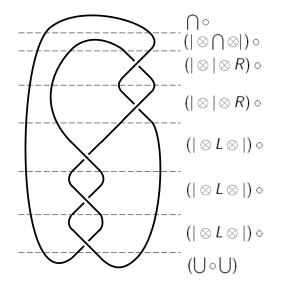


3

э.

< 🗇 🕨

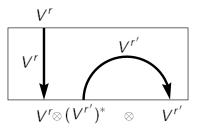
Example with 5₂ knot



- < ∃ →

< 4 → <

Operator invariant of tangle diagrams Coloring of each arcs :

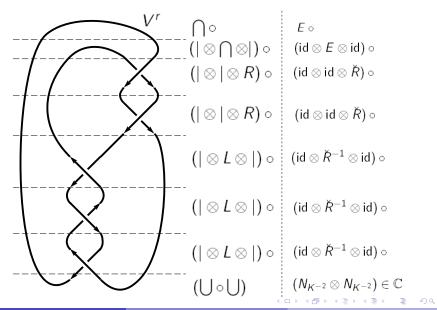


Assign the following functions to each elementary tangle diagram

$$| \longleftrightarrow \text{ id, } R \longleftrightarrow \mathring{R}, L \longleftrightarrow \mathring{R}^{-1}$$

$$\land \longleftrightarrow E_{K}, \land \longleftrightarrow E_{K^{2}}, \smile \longleftrightarrow N, \checkmark N_{K^{-2}}$$
where $E(f \otimes x) = f(x), E_{K^{2}}(x \otimes f) = f(K^{2} \cdot x), N(1) = \sum_{j} e_{j} \otimes e^{j}$ and
$$N_{K^{-2}}(1) = \sum_{j} e_{j} \otimes (K^{-2} \cdot e_{j}).$$

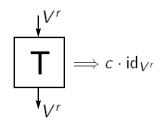
Example with 5₂ knot



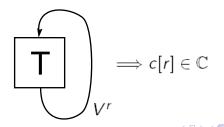
Jinseok Cho (Waseda University)

Colored Jones polynomial

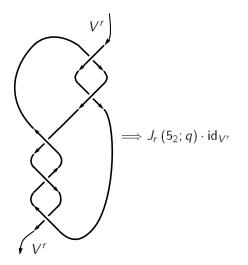
Let T be a (1,1)-tangle with color V^r . Then, by Schur's Lemma



for some constant $c \in \mathbb{C}$, and

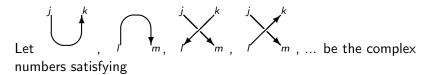


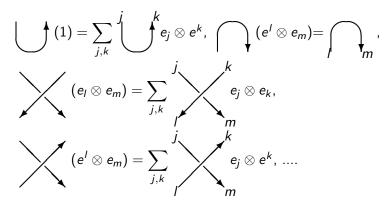
Colored Jones polynomial



For $2 \le r \le N$ and a (framed) link *L*, $J_r(L; q)$ is called the *r*-th colored Jones polynomial.

Jinseok Cho (Waseda University)





Let $(q)_k := \prod_{m=1}^k (1 - q^m)$ for a positive integer k, and $(q)_0 := 1$. Then $j = \int_{k}^{k} \delta_{j,k} q^{j-(N-1)/2}$, $\int_{k}^{k} \delta_{l,m} q^{-l+(N-1)/2}$,

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$j \qquad k : \delta_{k,l-h}\delta_{m,j+h} \frac{(\overline{q})_{j}^{-1}(\overline{q})_{k}^{-1}}{(\overline{q})_{h}(\overline{q})_{l}^{-1}(\overline{q})_{m}^{-1}} (-1)^{j+k+1}q^{-jk-(l+m)/2-(N^{2}+1)/4},$$

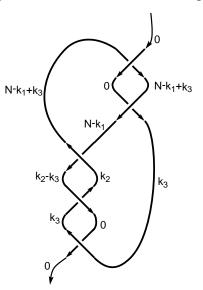
$$m \qquad k : \delta_{l,k-h}\delta_{j,m+h} \frac{(\overline{q})_{j}(\overline{q})_{k}}{(\overline{q})_{h}(\overline{q})_{l}(\overline{q})_{m}} (-1)^{l+m+1}q^{-lm-(j+k)/2-(N^{2}+1)/4},$$

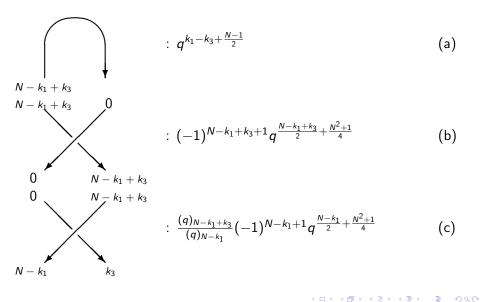
$$m \qquad k : \delta_{k,l+h}\delta_{m,j-h} \frac{(q)_{j}(q)_{k}}{(q)_{h}(q)_{l}(q)_{m}} (-1)^{l+m+1}q^{lm+(j+k)/2+(N^{2}+1)/4},$$

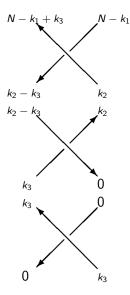
$$m \qquad k : \delta_{l,k+h}\delta_{j,m-h} \frac{(q)_{j}^{-1}(q)_{k}^{-1}}{(q)_{h}(q)_{l}^{-1}(q)_{m}^{-1}} (-1)^{j+k+1}q^{jk+(l+m)/2+(N^{2}+1)/4}.$$

Image: A mathematical states and a mathem

Consider the non-degenerate state of the 5_2 knot diagram.







$$\begin{array}{l} \vdots \quad \frac{(\overline{q})_{k_2-k_3}(q)_{k_2}}{(\overline{q})_{k_2+k_1-k_3-N}(q)_{N-k_1+k_3}(\overline{q})_{N-k_1}} \\ \times (-1)^{k_3+1} q^{-k_1k_2+\frac{2k_2-k_3}{2}+\frac{N^2+1}{4}} \end{array}$$
 (d)

$$: \frac{(q)_{k_2}}{(q)_{k_3}} (-1)^{k_3+1} q^{\frac{2k_2-k_3}{2} + \frac{N^2+1}{4}}$$

$$: (-1)^{k_3+1}q^{\frac{k_3}{2}+\frac{N^2+1}{4}}$$
 (f)

3

<ロ> (日) (日) (日) (日) (日)

(e)

Therefore,

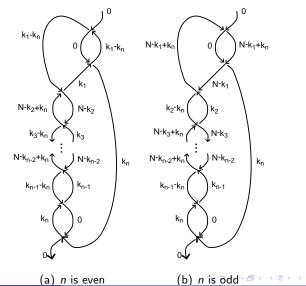
$$J_N(5_2; q) = \sum_{k_1, k_2, k_3} \Big\{ (a)(b)(c)(d)(e)(f) \Big\}.$$

3

<ロ> (日) (日) (日) (日) (日)

$J_N(T_n;q)$

Similarly, we can calculate $J_N(T_n; q)$ using the following state.



Jinseok Cho (Waseda University)

Colored Jones polynomial

2. Optimistic limit of colored Jones polynomial

___ ▶

Formal substitution

(

Consider the following formal substitution of the colored Jones polynomial

$$(q)_k \sim \exp \frac{N}{2\pi i} \left\{ -\operatorname{Li}_2(q^k) + \frac{\pi^2}{6} \right\}, (\overline{q})_k \sim \exp \frac{N}{2\pi i} \left\{ \operatorname{Li}_2(\overline{q}^k) - \frac{\pi^2}{6} \right\},$$

 $q^{kk'} \sim \exp \frac{N}{2\pi i} \left\{ \log q^k + \log q^{k'} \right\},$

and substitute q^{k_m} by w_m . In the case of $J_N(5_2; q)$,

$$\begin{array}{lll} \textbf{a}), (b), (f) &\sim 1, \\ (c) &\sim & \exp \frac{N}{2\pi i} \left\{ \operatorname{Li}_2(\frac{1}{w_1}) - \operatorname{Li}_2(\frac{w_3}{w_1}) \right\}, \\ (d) &\sim & \exp \frac{N}{2\pi i} \left\{ \operatorname{Li}_2(\frac{w_3}{w_2}) - \operatorname{Li}_2(w_2) - \operatorname{Li}_2(\frac{w_3}{w_1 w_2}) \right. \\ & \left. + \operatorname{Li}_2(\frac{w_3}{w_1}) - \operatorname{Li}_2(w_1) + \frac{\pi^2}{6} - \log w_1 \log w_2 \right\}, \\ (e) &\sim & \exp \frac{N}{2\pi i} \left\{ -\operatorname{Li}_2(w_2) + \operatorname{Li}_2(w_3). \right\} \end{array}$$

Jinseok Cho (Waseda University)

Formal substitution

Therefore,

$$2\pi i \frac{\log J_N(5_2; q)}{N} \sim \operatorname{Li}_2(\frac{1}{w_1}) - \operatorname{Li}_2(w_1) - 2\operatorname{Li}_2(w_2) - \log w_1 \log w_2 + \frac{\pi^2}{6} + \operatorname{Li}_2(w_3) + \operatorname{Li}_2(\frac{w_3}{w_2}) - \operatorname{Li}_2(\frac{w_3}{w_1w_2}).$$

Likewise, we define a function $W(T_n; w_1, w_2, \ldots, w_{n+1})$ by

$$2\pi i \frac{\log J_N(T_n;q)}{N} \sim W(T_n;w_1,w_2,\ldots,w_{n+1}).$$

Then we can obtain

$$W(T_n) = \operatorname{Li}_2(\frac{1}{w_1}) - \operatorname{Li}_2(\frac{w_n}{w_1}) + \sum_{m=1}^{n-2} \left(-\operatorname{Li}_2(w_m) - \operatorname{Li}_2(w_{m+1}) - \log w_m \log w_{m+1} + \frac{\pi^2}{6} + \operatorname{Li}_2(\frac{w_n}{w_m}) + \operatorname{Li}_2(\frac{w_n}{w_{m+1}}) - \operatorname{Li}_2(\frac{w_n}{w_m w_{m+1}}) \right) - \operatorname{Li}_2(w_{n-1}) + \operatorname{Li}_2(w_n) \bigg\}.$$

Optimistic limit

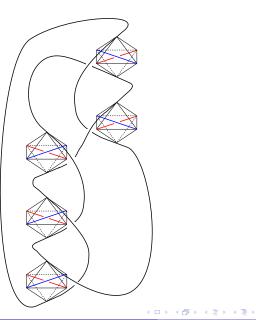
The optimistic limit $2\pi i \operatorname{o-lim}_{N \to \infty} \frac{\log J_N(T_n;q)}{N}$ is defined as follows. Choose some solution $(w_1, w_2, \dots, w_{n-1}, w_n)$ of the set of equations

$$\left\{ \exp\left(w_m \frac{\partial W}{\partial w_m}\right) = 1 \middle| m = 1, 2, \dots, n \right\}.$$

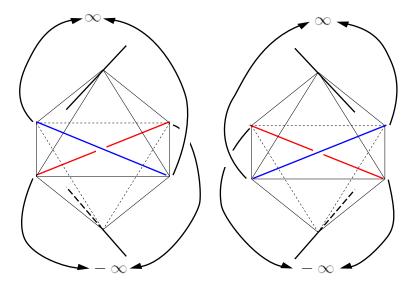
(We choose $w_n = 0$ here.) Then, the result of evaluating it to

$$W(T_n; w_1, w_2, \ldots, w_{n-1}, 0) - \sum_{m=1}^{n-1} \left(w_m \frac{\partial W}{\partial w_m} \right) \log w_m$$

is called the optimistic limit.



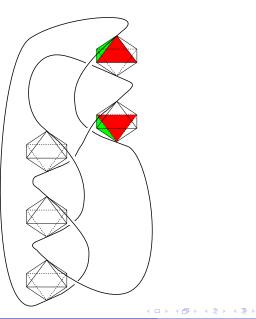
æ

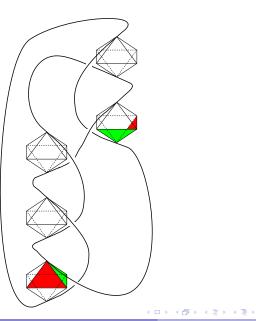


Jinseok Cho (Waseda University)

3

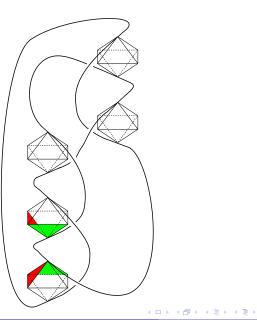
<ロ> (日) (日) (日) (日) (日)

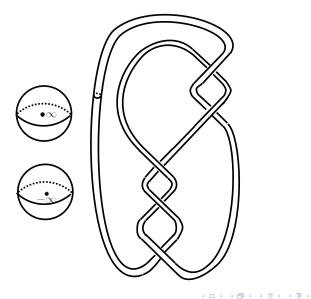


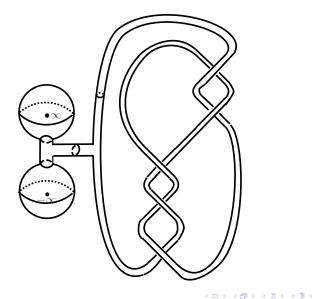


Jinseok Cho (Waseda University)

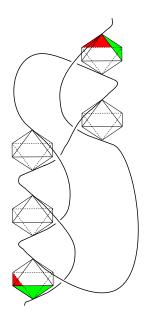
æ







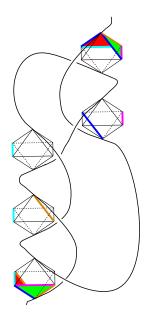
3



Jinseok Cho (Waseda University)

æ

<ロ> (日) (日) (日) (日) (日)

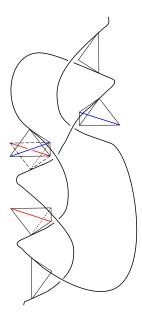


Jinseok Cho (Waseda University)

э

ヨト・イヨト

A B > 4
 B > 4
 B

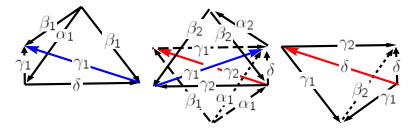


Jinseok Cho (Waseda University)

э

3 × 4 3 ×

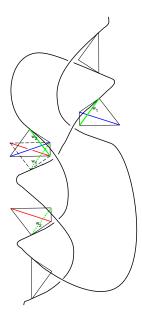
A B > 4
 B > 4
 B



(Note that $\gamma_1 = \alpha_2$.)

< A >

Parametrization



Jinseok Cho (Waseda University)

3

イロン イヨン イヨン イヨン

Hyperbolicity equations

The set of the hyperbolicity equations of this triangulation is

$$\left\{\frac{w_2}{(1-w_1)(1-\frac{1}{w_1})}=1, \ \frac{w_1}{(1-w_2)^2}=1\right\},\$$

which coincides with

$$\left\{\exp\left(w_1\frac{\partial W(5_2;w_1,w_2,0)}{\partial w_1}\right) = 1, \exp\left(w_2\frac{\partial W(5_2;w_1,w_2,0)}{\partial w_2}\right) = 1\right\}.$$

3

Hyperbolicity equations

In general, the set of the hyperbolicity equations of T_n becomes

$$\begin{cases} \frac{w_2}{(1-w_1)(1-\frac{1}{w_1})} &= 1, \\ \frac{w_{m-1}w_{m+1}}{(1-w_m)^2} &= 1, & \text{for } m = 2, 3, \dots, n-2, \\ \frac{w_{n-2}}{(1-w_{n-1})^2} &= 1 \end{cases}$$

which coincides with

$$\left\{ \exp\left(w_m \frac{\partial W(T_n; w_1, w_2, \dots, w_{n-1}, 0)}{\partial w_m}\right) = 1 \middle| m = 1, 2, \dots, n-1 \right\}.$$

On the other hands, the existence of *the geometric solution*, which gives the hyperbolic structure of the knot complement with $0 < \text{Im } w_m < \pi$ for m = 1, 2, ..., n - 1, was already proved by Hoste and Shanahan(2001).

Main theorem

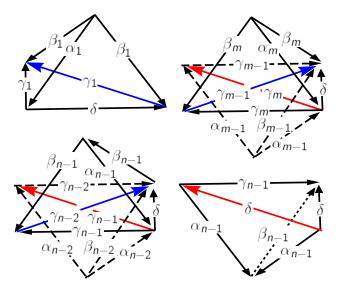
Theorem (Cho and J. Murakami(2010)) Let $(w_1, w_2, ..., w_{n-1})$ be the geometric solution of T_n . Then $2\pi i \operatorname{o-lim}_{N \to \infty} \frac{\log J_N(T_n; q)}{N}$ $:= W(T_n; w_1, w_2, ..., w_{n-1}, 0) - \sum_{m=1}^{n-1} \left(w_m \frac{\partial W}{\partial w_m} \right) \log w_m$ $\equiv -i(\operatorname{vol}(T_n) + i\operatorname{cs}(T_n)) \pmod{\pi^2}.$

3. Complex volume of T_n

3

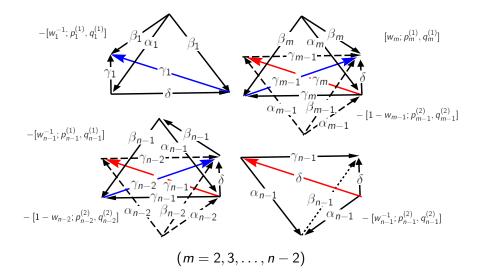
・ロン ・四 ・ ・ ヨン ・ ヨン

Elements of extended Bloch group



(m = 2, 3, ..., n - 2. Note that $\gamma_1 = \alpha_{n-1}$.)

Elements of extended Bloch group



< 回 > < 三 > < 三 >

Elements of extended Bloch group

$$p_{m}^{(1)}\pi i = \begin{cases} \log w_{1} + \log \delta - \log \gamma_{1} & \text{for } m = 1, \\ -\log w_{m} + \log \gamma_{m} - \log \delta & \text{for } m = 2, 3, \dots, n-2, \\ \log w_{n-1} + \log \delta - \log \gamma_{n-1} & \text{for } m = n-1, \end{cases}$$

$$q_{m}^{(1)}\pi i = \begin{cases} \log(1-\frac{1}{w_{1}}) + \log \beta_{1} - \log \alpha_{1} & \text{for } m = 1, \\ \log(1-w_{m}) + \log \beta_{m} + \log \delta - \log \alpha_{m} - \log \gamma_{m-1} \\ & \text{for } m = 2, 3, \dots, n-2, \\ \log(1-\frac{1}{w_{n-1}}) + \log \gamma_{n-1} + \log \beta_{n-1} - \log \alpha_{n-1} - \log \gamma_{n-2} \\ & \text{for } m = n-1, \end{cases}$$

$$p_{m}^{(2)}\pi i = \begin{cases} -\log(1-w_{m}) + \log \beta_{m} + \log \gamma_{m+1} - \log \alpha_{m} - \log \delta \\ & \text{for } m = 1, 2, \dots, n-2, \\ \log w_{n-1} + \log \delta - \log \gamma_{n-1} & \text{for } m = n-1, \end{cases}$$

$$q_{m}^{(2)}\pi i = \begin{cases} \log w_{m} + \log \delta - \log \gamma_{m} & \text{for } m = 1, 2, \dots, n-2, \\ \log(1-\frac{1}{w_{n-1}}) + \log \alpha_{n-1} + \log \gamma_{n-1} - \log \delta - \log \beta_{n-1} \\ & \text{for } m = n-1. \end{cases}$$

- ∢ ≣ →

Image: A mathematical states and a mathem

э

Complex volume

Evaluating
$$\sum [w; p, q]$$
 to
 $\widehat{\mathcal{L}}[w; p, q] = \operatorname{Li}_2(w) + \frac{1}{2} \log w \log(1-w) + \frac{\pi i}{2} (q \log w + p \log(1-w)) - \frac{\pi^2}{6}$, we obtain

$$i(\operatorname{vol}(T_n) + i\operatorname{cs}(T_n)) \equiv \widehat{L}\left(\sum_{i=1}^{n} [w; p, q]\right)$$
$$\equiv -W(T_n; w_1, w_2, \dots, w_{n-1}, 0)$$
$$+ \sum_{m=1}^{n-1} \left(w_m \frac{\partial W}{\partial w_m}\right) \log w_m \pmod{\pi^2}.$$

3

<ロ> (日) (日) (日) (日) (日)

4. Application to Yokota theory

3

E + 4 E +

< 17 > <

Yokota theory

Yokota defined some triangulation of T_n and some function $V(z_1, z_2, \ldots, z_{n-1})$ from the formal substitution of Kashaev's invariant by

$$V := \operatorname{Li}_{2}(\frac{1}{z_{1}}) + \sum_{k=2}^{n-1} \left\{ \frac{\pi^{2}}{6} - \operatorname{Li}_{2}(z_{k-1}) + \operatorname{Li}_{2}(\frac{z_{k-1}}{z_{k}}) - \operatorname{Li}_{2}(\frac{1}{z_{k}}) \right\} - \operatorname{Li}_{2}(z_{n-1}).$$

Let $(z_1, z_2, \ldots, z_{n-1})$ be the geometric solution corresponding to Yokota triangulation. Then the following holds.

$$z_{1} = \left(1 - \frac{1}{w_{1}}\right)^{-1}, \ z_{m-1} = \frac{1 - w_{m-1}}{w_{m}}, \ z_{m} = \frac{w_{m-1}}{1 - w_{m}},$$
$$\frac{z_{k-1}}{z_{k}} = \left(1 - \frac{1}{w_{m-1}}\right) \left(1 - \frac{1}{w_{m}}\right), \ z_{n-1} = 1 - w_{n-1}$$

and

$$i(\operatorname{vol}(T_n) + i\operatorname{cs}(T_n)) \equiv V(T_n; z_1, z_2, \dots, z_{n-1}) - \sum_{m=1}^{n-1} \left(z_m \frac{\partial V}{\partial z_m} \right) \log z_m \pmod{\pi^2}.$$

Application to Yokota theory

On the other hands, we know the well-known dilogarithm identity

$$\begin{aligned} \text{Li}_{2}\left(\frac{z_{m-1}}{z_{m}}\right) &= \text{Li}_{2}\left(z_{m-1}\right) + \text{Li}_{2}\left(z_{m}^{-1}\right) \\ -\text{Li}_{2}(1-w_{m-1}) - \text{Li}_{2}(1-w_{m}) - \log w_{m-1}\log w_{m}.\end{aligned}$$

Also we can find that, for the geometric solution $(w_1, w_2, \ldots, w_{n-1})$,

$$\left(w_m \frac{\partial W}{\partial w_m}\right) = \begin{cases} 0 & \text{for } k = 1, \\ 2\pi i & \text{for } k = 2, 3, \dots, n-1, \end{cases}$$

using some edge relations. From these facts, we obtain

$$-W(T_n; w_1, w_2, \dots, w_{n-1}, 0) + \sum_{m=1}^{n-1} \left(w_m \frac{\partial W}{\partial w_m} \right) \log w_m$$
$$\equiv V(z_1, z_2, \dots, z_{n-1}) \pmod{\pi^2}.$$

Application to Yokota theory

As a result, we obtain the following corollary.

Corollary

$$\sum_{m=1}^{n-1} \left(z_m \frac{\partial V}{\partial z_m} \right) \log z_m \equiv 0 \pmod{\pi^2}$$

and

$$i(\operatorname{vol}(T_n) + i\operatorname{cs}(T_n)) \equiv V(T_n; z_1, z_2, \dots, z_{n-1}) \pmod{\pi^2}.$$

Thank you very much for listening!

3

-

< 🗗 🕨 🔸