Preliminaries. The 3-dimensional hyperbolic space H?
is the upper half of R? endowed with the metric

ds® = (dz? + dy* + dz?) /22,
where OH? is identified with C. The group of orientation
preserving isometries of H” is PSL(2,C), which naturally
acts OH?. In what follows, by T'(z), we denote the ideal

tetrahedron in H® whose vertices are 0,1, 00 and z € C.
The volume of T'(z) is given by

D(z) = ImLiy(2) + log |z| arg(1 — z2).

Definition. Let K be a knot in S® and M its complement.

We call K hyperbolic if there is a discrete, torsion-free
subgroup I' of PSL(2, C) such that

M =H’/T,
where ' is called a holonomy representation of w (M).
An ideal triangulation of M. Let D be a diagram of

K, and prepare 4 ideal tetrahedra at each crossing of D,
where +00 denote the poles of S°.
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We glue them along the edges of D as follows.

Then, we obtain an ideal triangulation of

M = M\ {+o0).

An ideal triangulation of M. Let us assign complex
numbers to the corners of D and identify T'(z) with the
tetrahedron corresponding to the corner assigned z.




In what follows, we suppose K is 4; and put

B = {T(al) U T(bl)} M {T(Cg) U T(dg)}

As M \ B is homeomorphic to M, we can develop M \ B
in H3, where the tetrahedra touching B can not specify
distinct 4 points in OH> and so degenerate. In fact,

T(a1),T(b1),T(c3),T(d3)

are essentially one-dimensional objects and

T(c1),T(d1),T(az),T(b2),T(d2),T(as),T(b3),
T'(bs), T(ca),T(ds)

are essentially two-dimensional objects in M \ B. Thus,
we obtain an ideal triangulation & of M with

T(Cg), T(a4).



A picture of ON(BUK). Dotted edges are contracted.
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Notice that any holizontal line represents a meridian of
K and the bold curve represents the prefered longitude
of K.



Hyperbolicity equations. Hyperbolicity equations for
M can be read from the picture above, that is,

cafas = (1 —1/c3)(1 — ay) = m?,

where m denotes the eigenvalue of the meridian in I'. If
we put co = xm,ay = x/m, the equations become

(1) (1 —=1/zm)(1 —2/m) = m?

and the hyperbolic structure of M corresponding to m is
determined by a solution to (1). On the other hand, the
eigenvalue [ of the longitude in I' is given by

1—1/cc  1—1/zm

F= coas(l —ay) 22(1 —x/m)’

In what follows, M,, denotes M with the hyperbolic
structure obtained above.

Colored Jones polynomial. Due to Habiro and Le,
the N-colored Jones polynomial Jy(K,t) of K is given
by
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From now on, we fix r € C\ Q near 1 and put
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, m=-expm(r—1)i.



Asymptotics of g-factorials. Since
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where

H(z,m) = Lis(1/2m?) — Lis(z/m?) + 2log z logm.

Note that arg x(n) is bounded by a constant independent
of N and |x(n)| is bounded by a linear function of N and
its inverse. Let fny(z) denote a complex function such
that



Saddle point method. Then, by Cauchy’s theorem,
Jn (K, q) is equal to
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where C'y and C'_ are obtained by pushing the curve

| IN — 1
{ewecc 1<9g( )”}

N — N
out and into the unit disk of C. Then, by the saddle
point method, we have

is approximated by

exp{ Al -H(y,m)}
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when NN goes to infinity, where y is a solution to

(2) y? — (m? —1+1/m?)y+1=0.



On the other hand, we can observe
Im{H(z",m) + 27V —1logz"} <Im H(y, m)
for z € C'_, and so we have

N
27T

JIn (K, q) Nexp{ -H(y,m)}-

Neumann-Zagier function. From (1) and (2), we can
observe
zm+ym? =1, m/x+m?/y=1.
In particular,
(1= 1fam)(1 = 1ym?) =1, (1—a/m)(1—y/m?) =1

and so we have

_ 1—x/m 1 —1/ym? °
l2 / 2 ( / y)

B 1—1/:1:777,.31j B 1 —y/m?

— exp {de(y,m)}j

dm

which shows that H(y, m) is nothing but the Neumann-
Zagier function on the deformation space of M.



Volumes. Furthermore, Im H(y, m) is given by
D(1/ym?*) — D(y/m?)

+log |y|{arg(1 — 1/ym®)+arg(1 — y/m*)+2argm}

+ log |m|{2arg(1 — 1/ym2)—2arg(1 — y/m2)+2 argy}

dH(y,m)}

=D(1/ym?) = Diy/m?) + loglm| - 1 { m
where D(1/ym?) — D(y/m?) is equal to
—D(1/xm) + D(x/m) = vol(M,,).

Therefore we have

dH
vol(M,,) = Im H(y,m) — log |m| - Im {m ly,m) }
dm
for any m € C\ Q near 1, that is, the volume of M,, is
determined by the function H(y, m) and so determined
by the colored Jones polynomials.



