
Preliminaries. The 3-dimensional hyperbolic space H3

is the upper half of R3 endowed with the metric
ds2 = (dx2 + dy2 + dz2)/z2,

where ∂H3 is identified with C. The group of orientation
preserving isometries of H3 is PSL(2,C), which naturally
acts ∂H3. In what follows, by T (z), we denote the ideal
tetrahedron in H3 whose vertices are 0, 1,∞ and z ∈ C.
The volume of T (z) is given by

D(z) = Im Li2(z) + log |z| arg(1− z).

Definition. Let K be a knot in S3 and M its complement.
We call K hyperbolic if there is a discrete, torsion-free
subgroup Γ of PSL(2, C) such that

M = H3/Γ,
where Γ is called a holonomy representation of π1(M).

An ideal triangulation of Ṁ . Let D be a diagram of
K, and prepare 4 ideal tetrahedra at each crossing of D,
where ±∞ denote the poles of S3.
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We glue them along the edges of D as follows.

Then, we obtain an ideal triangulation of

Ṁ = M \ {±∞}.

An ideal triangulation of M . Let us assign complex
numbers to the corners of D and identify T (z) with the
tetrahedron corresponding to the corner assigned z.
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In what follows, we suppose K is 41 and put

B = {T (a1) ∪ T (b1)} ∩ {T (c3) ∪ T (d3)}.
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As Ṁ \B is homeomorphic to M , we can develop Ṁ \B
in H3, where the tetrahedra touching B can not specify
distinct 4 points in ∂H3 and so degenerate. In fact,

T (a1), T (b1), T (c3), T (d3)

are essentially one-dimensional objects and

T (c1), T (d1), T (a2), T (b2), T (d2), T (a3), T (b3),

T (b4), T (c4), T (d4)

are essentially two-dimensional objects in Ṁ \ B. Thus,
we obtain an ideal triangulation S of M with

T (c2), T (a4).



A picture of ∂N(B∪K). Dotted edges are contracted.
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Notice that any holizontal line represents a meridian of
K and the bold curve represents the prefered longitude
of K.



Hyperbolicity equations. Hyperbolicity equations for
M can be read from the picture above, that is,

c2/a4 = (1− 1/c2)(1− a4) = m2,

where m denotes the eigenvalue of the meridian in Γ. If
we put c2 = xm, a4 = x/m, the equations become

(1) (1− 1/xm)(1− x/m) = m2

and the hyperbolic structure of M corresponding to m is
determined by a solution to (1). On the other hand, the
eigenvalue l of the longitude in Γ is given by

l2 =
1− 1/c2

c2a4(1− a4)
=

1− 1/xm
x2(1− x/m)

.

In what follows, Mm denotes M with the hyperbolic
structure obtained above.

Colored Jones polynomial. Due to Habiro and Le,
the N -colored Jones polynomial JN (K, t) of K is given
by

N−1∑
n=0

n∏
k=1

tN (1− t−N−k)(1− t−N+k).

From now on, we fix r ∈ C \Q near 1 and put

ω = exp
2πi
N

, q = exp
2πri
N

, m = expπ(r − 1)i.



Asymptotics of q-factorials. Since
n∏
k=1

(1− q−N±k)

is written as

exp
N

2π

{
2π
N

n∑
k=1

log(1− e±
2πkri
N /m2)

}

=χ±(n) · exp
N

2π

{∫ 2πn
N

0

log(1− e±tri/m2) dt

}

=χ±(n) · exp
N

2πri

{
±

∫ q±n/m2

1/m2

log(1− u)
u

du

}

=χ±(n) · exp
N

2πri
{±Li2(q±n/m2)∓ Li2(1/m2)},

we have

JN (K, q) =
N−1∑
n=0

χ(n) · exp
{

N

2πr
√
−1
·H(qn,m)

}
,

where

H(z,m) = Li2(1/zm2)− Li2(z/m2) + 2 log z logm.

Note that argχ(n) is bounded by a constant independent
of N and |χ(n)| is bounded by a linear function of N and
its inverse. Let fN (z) denote a complex function such
that

fN (ωn) = χ(n).



Saddle point method. Then, by Cauchy’s theorem,
JN (K, q) is equal to

1
2πi

∫
C+∪C−

N−1∑
n=1

fN (z)
z − ωn

exp
{

N

2πri
·H(zr,m)

}
dz

=
N

2πi

∫
C+∪C−

fN (z)
z(1− z−N )

exp
{

N

2πri
·H(zr,m)

}
dz

=
N

2πi

∫
C+

fN (z)
z(1− z−N )

exp
{

N

2πri
·H(zr,m)

}
dz

+
N

2πi

∫
C−

fN (z)
z(zN − 1)

exp
N

2πri
{H(zr,m)+2πi log zr} dz,

where C+ and C− are obtained by pushing the curve{
eiθ ∈ C

∣∣∣∣ π

N
≤ θ ≤ (2N − 1)π

N

}
out and into the unit disk of C. Then, by the saddle
point method, we have∫

C+

fN (z)
z(1− z−N )

exp
{

N

2πri
·H(zr,m)

}
dz

is approximated by

exp
{

N

2πri
·H(y,m)

}
when N goes to infinity, where y is a solution to

(2) y2 − (m2 − 1 + 1/m2)y + 1 = 0.



On the other hand, we can observe

Im {H(zr,m) + 2π
√
−1 log zr} < ImH(y,m)

for z ∈ C−, and so we have

JN (K, q) ∼ exp
{

N

2πri
·H(y,m)

}
.

Neumann-Zagier function. From (1) and (2), we can
observe

xm + ym2 = 1, m/x + m2/y = 1.

In particular,

(1− 1/xm)(1− 1/ym2) = 1, (1− x/m)(1− y/m2) = 1

and so we have

l−2 =
1− x/m

1− 1/xm
· x2 =

(
1− 1/ym2

1− y/m2
· y

)2

= exp
{
m

dH(y,m)
dm

}
,

which shows that H(y,m) is nothing but the Neumann-
Zagier function on the deformation space of M .



Volumes. Furthermore, ImH(y,m) is given by

D(1/ym2)−D(y/m2)

+ log |y|{arg(1− 1/ym2)+arg(1− y/m2)+2 argm}
+ log |m|{2 arg(1− 1/ym2)−2 arg(1− y/m2)+2 arg y}

=D(1/ym2)−D(y/m2) + log |m| · Im
{
m

dH(y,m)
dm

}
,

where D(1/ym2)−D(y/m2) is equal to

−D(1/xm) + D(x/m) = vol(Mm).

Therefore we have

vol(Mm) = ImH(y,m)− log |m| · Im
{
m

dH(y,m)
dm

}

for any m ∈ C \ Q near 1, that is, the volume of Mm is
determined by the function H(y,m) and so determined
by the colored Jones polynomials.


