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The Ideal Tetrahedron

Here we see the oriented convex hull of four ideal points, an ideal tetrahedron.
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Ideal Tetrahedron

The boundary at infinity is the Riemann sphere with hyperbolic isometries corresponding
to conformal mappings. Hence we label the points...
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Ideal Tetrahedron

..and compute the cross ratio z. This cross ration parameterizes these labeled oriented
ideal tetrahedra.

z=[p,q;r,s]
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Ideal Tetrahedron

It is easy to see that this cross ration depends really only on a choice of orientation and a
choice of a pair of opposite edges. Hence, the complex coordinate parameterize the
space of ideal oriented tetrahedra with a specified pair of opposite edges.
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Another Big Free Groups

Let

< C >

denote the free Abelian group generated
by all complex numbers, i.e. all ideal
tetrahedra.
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Key Relations

Two understand the need relations, take a pair of ideal tetrahedra and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

and...

Scissors Congruence: The Birth of Hyperbolic Volume – p.12/70



Key Relations

glue them together.
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Key Relations

Now "firepole" this pair and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

and...
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Key Relations

we can re-express this pair as three ideal tetrahedra. This is called a 2-3 move.
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Key Relations

In terms of the z coordinates we have

[z] + [w]
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Key Relations

equals

[zw] +

[

z − zw

1 − zw

]

+

[

w − zw

1 − zw

]
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The Relations

Let T the subgroup of < C > generated

by all elements in the form

[z] + [w] − [zw] −

[

z − zw

1 − zw

]

−

[

w − zw

1 − zw

]

,

where z and w are complex numbers, to-
gether with all elements in the form [z] +
[z̄].

Scissors Congruence: The Birth of Hyperbolic Volume – p.24/70



The Dupont and Sah Theorem

Wonderfully enough these are all the relations we need. Theorem:

(Dupont, Sah)

Sis(Hn) ∼=
< C >

T
,
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The Proof

Recall Sis∞(Hn) ∼= Sis(Hn). A key step in the proof is showing we can express a finite
tetrahedron using ideal tetrahedra.
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From Finite to Infinite

Let us make a finite vertex infinite. First extend an edge to infinity.

8
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From Finite to Infinite

Then form the red tetrahedra, with an ideal vertex.

+
8
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From Finite to Infinite

and note...

+
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From Finite to Infinite

and note...
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From Finite to Infinite

and note...
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From Finite to Infinite

and note...
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From Finite to Infinite

and note...
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From Finite to Infinite

Hence, we have expressed the finite tetrahedron using two ideal tetrahedra each with
only 3 finite vertices.
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From Finite to Infinite

One can continue this till one is using
only ideal tetrahedra. The hard step is re-
moving the final vertex. The best known
method to do this is due to Yana Mohanty
(2003).
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Getting a Grip on Volume

At this point, we see that understanding
hyperbolic volume can be reduced to un-
derstanding the volume of an ideal tetra-
hedron. To this it useful to take a close
look at the ideal tetrahedron’s angles.
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Ideal Tetrahedron’s Angles

Given any ideal polyhedron, at each ideal vertex we see this. The red sphere is a
horosphere.
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Euclidean Angles

Sending the ideal vertex to the point at infinity in the upper-half space model, we find that
the angles at an ideal vertex are Euclidean.

C
8
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Ideal Tetrahedron’s Angles

We view our tetrahedron in the upper-half space model.

z
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Ideal Tetrahedron’s Angles

Looking down from infinity we see.

A+B+C=

A B

C

0 1

z

π
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Ideal Tetrahedron’s Clinants

It is best not to think in terms of the dihedral angles but rather the dihedral clinants.
Namely e2Iθ is the clinant associated to the angle θ.

c
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Ideal Tetrahedron’s Clinants

The compactification of the space of ideal tetrahedra is all clinants triples (a, b, c) such

that abc = 1, "blown up" at (1, 1, 1). To see this, note that the z coordinate equals 1−a

1−b̄
.
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Decomposing Ideal Tetrahedron

We need one more decomposition. Start with an ideal tetrahedron...

P
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Decomposing Ideal Tetrahedron

and double it.

P

a
b

c
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Decomposing Ideal Tetrahedron

Firepole this doubled ideal tetrahedron.

c

a
b
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Decomposing Ideal Tetrahedron

Then we have our 2-3 move which....

a
b

c
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Decomposing Ideal Tetrahedron
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Decomposing Ideal Tetrahedron

Then we have our 2-3 move which....
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Decomposing Ideal Tetrahedron

Then we have our 2-3 move which....
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Decomposing Ideal Tetrahedron

Then we have our 2-3 move which....

a
b

c
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Decomposing Ideal Tetrahedron

allows to view our double tetrahedron as three ideal tetrahedra.

a
b

c
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Decomposing Ideal Tetrahedron

From infinity we see these three ideal tetrahedra are very special ideal tetrahedra, the
isosceles ideal tetrahedron.
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The Isosceles Ideal Tetrahedron

Let us denote this isosceles ideal tetrahedron as II(a). We have just proved

IT (a, b, c) = II(a) + II(b) + II(c).

So we have reduced finding the volume of an ideal tetrahedron to finding the volume of
an isosceles ideal tetrahedron.

=II(a)
aa

−1/a

−1/a

−1/a

−1/a

2
2
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The Isosceles Ideal Tetrahedron

Equally important is that the z coordinate of an Isosceles ideal tetrahedron II(a) i s a

itself, and a z coordinate corresponds to an isosceles ideal tetrahedron if and only if it is
unit sized.

=II(a)
aa

−1/a

−1/a

−1/a

−1/a
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A Tetrahedron’s Root

Theorem:(Dupont, Sah)

[zn] = n
n

∑

k=1

[e
ik2π

n z]
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In particular

Corollary:(Kubert)

V ol(zn) = n
n

∑

k=1

V ol(e
ik2π

n z)
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Milnor’s Theorem

Theorem:(Milnor) A continuous function

f : S1
→ R

that satisfies
f(z) = f(z̄)

and

f(zn) = n
n

X

k=1

f(e
ik2π

n z)

must be equal
c=(Li2(z)).

Li2(ζ) is the Euler dilogarithm

Li2(ζ) =

Z ζ

0

log(1 − s)

s
ds.
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The Birth of Volume

After normalizing, we have a formula due

to Lobachevski,

2V ol(IT (a, b, c)) = =(a) + =(b) + =(c).
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The Milnor Conjecture

Let

M = spanQ{[e
i2πp

q ]}

and view the volume as a map, V ol, from

M to RQ. Conjecture: ker(V ol) is the Q

span of elements in the from

[e
i2πp

q ] − n

n
∑

k=1

[e
ik2π

n e
i2πp
nq ]
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The Milnor conjecture

In words: all rational relations are conse-
quences of the Kubert identities.
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Dehn Invariant

Recall, Sis(Hn) ≡ <C>
T

. Let us extend the Dehn invariant to <C>
T

. If we have an ideal
points cut off with a horoball, we may use the cut off lengths to define

Dehn(P ) =
X

e∈P

l(e) ⊗ θ(e).

C

8
A

B
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Dehn Invariant

s Notice this is well defined since if you use a different horosphere, then the difference
of our two candidate Dehn Invariants is

x ⊗
X

θ∈∞

θ = x ⊗ nπ = 0.

x

8

A
B C

x

x
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Dehn Example?

There is no know explicit "Dehn counter example" in H3! Below we have graphed
V ol(II(e2Iθ)), with respect to θ.

0 π
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Dehn Example?

We’d like (and expect) that every such ϕ(p/q) is irrational, and hence provides a "Dehn
counter example". But not one is known to be! We even have...

φπ(p/q)
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Dehn Example?

Theorem:(Dupont,Sah ) If
Dehn(ϕ(1/N)) = 0

for any 1/N ∈ (0, 1/6), then the Milnor conjecture is false.

φπ(p/q)
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Dehn Kernel

Denote the kernel of Dehn restricted to
<C>

T as D(C).

Notice: Dehn Sufficiency is equivalent to

(V ol, Dehn) being injective.
In other words that (V ol, Dehn) has trivial
kernel, or even more simply that V ol is
1-1 when restricted D(C).
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Countability Conjectures

Conjecture: V ol is 1-1 when restricted

D(C).

Conjecture: D(C) is countable.
Conjecture: dimQ(D(C)) > 1.
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Evidence

Theorem (Suslin) <C>
T has the unique

division property.
Theorem: (Dupont, Sah) V ol(D(C)) is
countable.
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Suslin’s Theorem

The rectangle on top and the triangle below are both the middle polygon divided by 2.
Hence they are scissors congruent.

+

+
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Evidence

The unique division property say that for

every [P ] there exist a class

(1/n)[P ] ∈ Sis(Hn) and that if n[Q] = n[R]

then [Q] = [R]. Notice that

[zn] = n

n
∑

k=1

[e
ik2π

n z]

is a candidate for division. Suslin showed
this candidate obeys the 2 − 3 relation.
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