Part II: Hyperbolic volume Higher dimensional computations and open questions

Ruth KELLERHALS
University of Fribourg, Switzerland

Workshop on Hyperbolic Volumes
Waseda University, December 9 - 11, 2003

Triangulated hyperbolic 5-folds

THEOREM (A. Goncharov)

Let M be an oriented hyperbolic 5-manifold of finite volume. Then, there are finitely many $z_i \in \bar{\mathbb{Q}}$, $i \in I$, satisfying

$$\sum_{i\in I} \{z_i\} \otimes z_i = 0 \quad \text{in} \quad G(\bar{\mathbb{Q}}) \otimes \bar{\mathbb{Q}}^{\times}$$

such that

$$\mathsf{vol}_5(M) = q \sum_{i \in I} \mathcal{L}_3(z_i)$$
 for some $q \in \mathbb{Q}^{\times}$ (**)

Here, $\{x\} \in G(F)$ where for any number field F

$$G(F) = \frac{\mathbb{Z}[P_1(F)]}{< \sum_{k=1}^{5} (-1)^k [r_2(x_1, \dots, \widehat{x_k}, \dots, x_5)], [0], [\infty] \mid x_i \neq x_j > 0}$$

About hyperbolic sphere packings

Consider a packing \mathcal{B} of r-spheres in hyperbolic space H^n . Let $B \in \mathcal{B}$ and consider its Dirichlet-Voronoĭ-cell

$$D(B) = \{ p \in H^n \mid d(p, B) \le d(p, B'), \forall B' \in \mathcal{B} \}$$

The **local density** ld(B,D) of a ball B w.r.t. D is defined by

$$ld(B,D) := \frac{\operatorname{vol}_n(B)}{\operatorname{vol}_n(D)} < 1$$

Packings are dense if all local densities are as close to 1 as possible. There is the following bound.

Theorem. (K. Böröcky senior)

$$\forall B \in \mathcal{B} : ld(B,D) \leq d_n(r) = (n+1) \frac{\mathsf{vol}_n(B \cap S_{reg}(2\alpha))}{\mathsf{vol}_n(S_{reg}(2\alpha))}$$

Equality holds if and only if B are the in-balls of the cells of a regular tesselation $\{m, 3, ..., 3\}$ of H^n (i.e. by regular simplices of dihedral angles π/m).

These tesselations exist precisely for (n,m)=(2,p) for $p\geq 7$, (3,6) and (4,5) (H.S.M. Coxeter).

Problem. Prove that the simplical density function $d_n(r)$ is **strictly monotonely increasing**

Geometric application. (K, 2003)

The coset space of H^4 by the cocompact arithmetic Coxeter group

is the minimal volume complete hyperbolic 4-orbifold.

Some global results

Let M be a complete hyperbolic n-manifold. By Margulis-Zassenhaus,

$$\exists\,arepsilon=arepsilon_n>0$$
 : $M=M_{>arepsilon}\cup M_{\leqarepsilon}$ with $M_{>arepsilon}=\{p\in M\mid r_p(M)>arepsilon/2\}$, $M_{\leqarepsilon}=M\setminus M_{>arepsilon}$

Components of $M_{\leq \varepsilon}$

- tubes T around short simple closed geodesics g \approx ball bundles over S^1
- ullet cusp neighborhoods C pprox $N^{n-1} imes \mathbb{R}_{>0}$

Canonical cusps

Let Γ be a torsion–free discrete group of hyperbolic isometries so that $\Gamma_\infty\subset\Gamma$ is non–trivial.

Let $\Lambda \subset \Gamma_{\infty}$ be the *translational lattice*.

By Bieberbach: Λ of finite index and of rank n-1

Let $\mu \neq 0$ be a *shortest* vector in Λ :

$$B_{\infty}(\mu) := \{ x \in H^n \mid x_n > |\mu| \}$$

canonical horoball

Properties

- $B_{\infty}(\mu)$ precisely invariant
- $C = B_{\infty}(\mu)/\Gamma_{\infty} \subset M$ canonical cusp
- Canonical cusps are pairwise disjoint

Estimate of the Margulis constant

Let
$$n \geq 2$$
, $\nu = \left[\frac{n-1}{2}\right]$, and
$$c_{\nu} = \frac{2^{\nu+1}}{\pi^{\nu}} \cdot \frac{\Gamma(\frac{\nu+2}{2})^2}{\Gamma(\nu+2)} = \frac{2}{\pi^{\nu}} \int_0^{\pi/2} \sin^{\nu+1}t \, dt$$

THEOREM (K, 2002)

For each $\varepsilon \leq \varepsilon_n := \frac{c_\nu}{3^{\nu+1}}$, the thin part $M_{\leq \varepsilon}$ is a finite disjoint union of canonical cusps and tubes around closed geodesics of length $l \leq \varepsilon$ and of radius r satisfying

$$\cosh(2r) = \frac{1-3\kappa}{\kappa}$$
 , where $\kappa = \kappa(l) = 2(l/c_{\nu})^{\frac{2}{\nu+1}}$

Examples.
$$\varepsilon_2 = 2/3 \simeq 0.6666$$
 , $\varepsilon_3 = 1/18 \simeq 0.0555$ $\varepsilon_5 \simeq 0.0050$

Compare

•
$$\varepsilon_2 \ge \operatorname{arsinh}(1) \simeq 0.8813$$
 (P. Buser, 1978)

•
$$\varepsilon_3 \ge 0.104$$
 (R. Meyerhoff, 1987)

•
$$\varepsilon_n \ge \sqrt{3}/9\pi \simeq 0.0612$$
 for $n = 4,5$ (K, 2001, 2002)

Applications

• Volume bound : $\exists \, p \in M$ such that $i_p(M) > rac{1}{(n+3)\,\pi^{n-1}}$ and $\operatorname{vol}_n(M) > rac{\Omega_{n-1}}{n}\,rac{1}{[(n+3)\pi^{n-1}]^n}$

Remark. If M is non-compact with $m \geq 1$ cusps, then

$$\operatorname{vol}_n(M) \geq m \, rac{2^n}{n(n+1)} \, \operatorname{vol}_n(S^{\infty}_{reg})$$

 \bullet For M is compact,

$$i(M) \geq \frac{c(n)}{\left(\sinh(\dim(M))\right)^{\left[\frac{n+1}{2}\right]}}$$

- Gromov's invariant: For n=2,3 and n>>1, $||M||>\gamma_n$, where $\gamma_n:=\frac{\Omega_{n-1}}{8n^2}\frac{1}{\left\lceil (n+1)\pi^{n-1}\right\rceil^n}$
- Number of manifolds with volume bound:]

In the estimate $V^{\alpha V} \geq \rho_n(V) \geq V^{\beta V}$ of [BGLM],

$$\log \rho_n(V) < \frac{n^2 \exp(23 n(n+1))}{\Omega_{n-1}} V \log V$$

Compare with Gromov's estimate

$$\rho_n(V) \le V \exp(\exp(\exp(n+V)))$$

Mahler measures

Let $P(x_1, ..., x_n)$ be an n-variable Laurent polynomial over \mathbb{C} .

$$m(P) = \frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} \log |P(e^{i\theta_1}, \dots, e^{i\theta_n})| d\theta_1 \cdots d\theta_n$$

(logarithmic) Mahler measure of P

For $P(x) = a \prod_{j} (x - \alpha_j)$, Jensen's formula yields

$$m(P) = \log|a| + \sum_{j} \log_{+}|\alpha_{j}|$$

where $\log_+ x = \max(0, \log x)$ as usually

For n>1, some Mahler measures are related to **polylogarithms**

Mahler measures for few variables

The exemplary results of Chris Smyth (1981)

•
$$\pi m(1+x+y) = \frac{3\sqrt{3}}{4\pi} L(\chi_{-3},s) = \sum_{n=1}^{\infty} \left(\frac{-3}{n}\right) \frac{1}{n^s}$$

= $1 - \frac{1}{2^s} + \frac{1}{4^s} - \frac{1}{5^s} + \cdots$

Consider the 3-variable polynomial

$$P_{a,b,c}(x,y,z) := a+bx^{-1}+cy+(a+bx+cy)z, a,b,c \in \mathbb{R}$$
:

•
$$\pi^2 m(1+x+y+z) = 7\zeta(3)/2$$

•
$$\pi^2 m(1 + x^{-1} + y + (1 + x + y)z) = 14\zeta(3)/3$$

Hints for the proof

 \circ Relate $m(P_{a,b,c})$ to $m(P_{0,c,1})$ and $m(P_{1,b,c})$

$$\circ \quad \pi^2 \, m(P_{0,c,1}) \quad \longleftrightarrow \quad -\text{Re} \, \int \int \, \text{Log}(x+y) \frac{dx}{x} \, \frac{dy}{y}$$

$$\circ \quad \pi^2 \, m(P_{1,b,c}) \quad \longleftrightarrow \quad -\text{Re} \, \int \int \, \text{Log}(1+x+y) \frac{dx}{x} \, \frac{dy}{y}$$

 \circ For n = 2,3, compare with

$$\Lambda_n(z) = \frac{1}{(n-1)!} \int_0^z \frac{(-\log t)^{n-1}}{1-t} dt = \sum_{r=0}^{n-1} \frac{(-\log z)^r}{r!} \operatorname{Li}_{n-r}(z)$$

An n-variable Mahler measure

Theorem (Smyth, preprint 2003)

Let $n \geq 3$. Then,

$$m((x_1 + x_1^{-1}) \cdots (x_{n-2} + x_{n-2}^{-1}) + 2^{n-3}(x_{n-1} + x_n)) =$$

$$(n-3) \log 2 + \left(\frac{2}{\pi}\right)^{n-1} {}_{n+1}F_n\left(\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, \dots, 1\right\}, \left\{\frac{3}{2}, \dots, \frac{3}{2}\right\}, 1\right)$$

Here, the **generalised hypergeometric function** ${}_rF_m$ is defined by

$$_rF_m(\{a_1,\ldots,a_r\},\{b_1,\ldots,b_m\},z):=\sum_{k=0}^{\infty}rac{(a_1)_k\cdots(a_r)_k\,z^k}{(b_1)_k\cdots(b_m)_k\,k!}$$
 with $(a)_k:=a(a+1)\cdots(a+k-1)$

Corollary.

$$m(1+x+y+z) = \frac{4}{\pi^2} {}_{4}F_{3}(\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\}, \{\frac{3}{2}, \frac{3}{2}, \frac{3}{2}\}, 1)$$
$$= \frac{7}{2\pi^2} \zeta(3)$$

Triangulated hyperbolic 5-folds

THEOREM (A. Goncharov)

Let M be an oriented hyperbolic 5-manifold of finite volume. Then, there are finitely many $z_i \in \bar{\mathbb{Q}}$, $i \in I$, satisfying

$$\sum_{i\in I} \{z_i\} \otimes z_i = 0 \quad \text{in} \quad G(\bar{\mathbb{Q}}) \otimes \bar{\mathbb{Q}}^{\times}$$

such that

$$\mathsf{vol}_5(M) = q \sum_{i \in I} \mathcal{L}_3(z_i)$$
 for some $q \in \mathbb{Q}^{\times}$ (**)

Here, $\{x\} \in G(F)$ where for any number field F

$$G(F) = \frac{\mathbb{Z}[P_1(F)]}{< \sum_{k=1}^{5} (-1)^k [r_2(x_1, \dots, \widehat{x_k}, \dots, x_5)], [0], [\infty] \mid x_i \neq x_j > 0}$$

About hyperbolic sphere packings

Consider a packing \mathcal{B} of r-spheres in hyperbolic space H^n . Let $B \in \mathcal{B}$ and consider its Dirichlet-Voronoĭ-cell

$$D(B) = \{ p \in H^n \mid d(p, B) \le d(p, B'), \forall B' \in \mathcal{B} \}$$

The **local density** ld(B,D) of a ball B w.r.t. D is defined by

$$ld(B,D) := \frac{\operatorname{vol}_n(B)}{\operatorname{vol}_n(D)} < 1$$

Packings are dense if all local densities are as close to 1 as possible. There is the following bound.

Theorem. (K. Böröcky senior)

$$\forall B \in \mathcal{B} : ld(B,D) \leq d_n(r) = (n+1) \frac{\mathsf{vol}_n(B \cap S_{reg}(2\alpha))}{\mathsf{vol}_n(S_{reg}(2\alpha))}$$

Equality holds if and only if B are the in-balls of the cells of a regular tesselation $\{m, 3, ..., 3\}$ of H^n (i.e. by regular simplices of dihedral angles π/m).

These tesselations exist precisely for (n,m)=(2,p) for $p\geq 7$, (3,6) and (4,5) (H.S.M. Coxeter).

Problem. Prove that the simplical density function $d_n(r)$ is **strictly monotonely increasing**

Geometric application. (K, 2003)

The coset space of H^4 by the cocompact arithmetic Coxeter group

is the minimal volume complete hyperbolic 4-orbifold.

An n-variable Mahler measure

Theorem (Smyth, preprint 2003)

Let $n \geq 3$. Then,

$$m((x_1 + x_1^{-1}) \cdots (x_{n-2} + x_{n-2}^{-1}) + 2^{n-3}(x_{n-1} + x_n)) =$$

$$(n-3) \log 2 + \left(\frac{2}{\pi}\right)^{n-1} {}_{n+1}F_n\left(\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, \dots, 1\right\}, \left\{\frac{3}{2}, \dots, \frac{3}{2}\right\}, 1\right)$$

Here, the **generalised hypergeometric function** ${}_rF_m$ is defined by

$$_rF_m(\{a_1,\ldots,a_r\},\{b_1,\ldots,b_m\},z):=\sum_{k=0}^{\infty}rac{(a_1)_k\cdots(a_r)_k\,z^k}{(b_1)_k\cdots(b_m)_k\,k!}$$
 with $(a)_k:=a(a+1)\cdots(a+k-1)$

Corollary.

$$m(1+x+y+z) = \frac{4}{\pi^2} {}_{4}F_{3}(\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\}, \{\frac{3}{2}, \frac{3}{2}, \frac{3}{2}\}, 1)$$
$$= \frac{7}{2\pi^2} \zeta(3)$$

Mahler measures for few variables

The exemplary results of Chris Smyth (1981)

•
$$\pi m(1+x+y) = \frac{3\sqrt{3}}{4\pi} L(\chi_{-3},s) = \sum_{n=1}^{\infty} \left(\frac{-3}{n}\right) \frac{1}{n^s}$$

= $1 - \frac{1}{2^s} + \frac{1}{4^s} - \frac{1}{5^s} + \cdots$

Consider the 3-variable polynomial

$$P_{a,b,c}(x,y,z) := a+bx^{-1}+cy+(a+bx+cy)z, a,b,c \in \mathbb{R}$$
:

•
$$\pi^2 m(1+x+y+z) = 7\zeta(3)/2$$

•
$$\pi^2 m(1 + x^{-1} + y + (1 + x + y)z) = 14\zeta(3)/3$$

Hints for the proof

 \circ Relate $m(P_{a,b,c})$ to $m(P_{0,c,1})$ and $m(P_{1,b,c})$

$$\circ \quad \pi^2 \, m(P_{0,c,1}) \quad \longleftrightarrow \quad -\text{Re} \, \int \int \, \text{Log}(x+y) \frac{dx}{x} \, \frac{dy}{y}$$

$$\circ \quad \pi^2 \, m(P_{1,b,c}) \quad \longleftrightarrow \quad -\text{Re} \, \int \int \, \text{Log}(1+x+y) \frac{dx}{x} \, \frac{dy}{y}$$

 \circ For n = 2,3, compare with

$$\Lambda_n(z) = \frac{1}{(n-1)!} \int_0^z \frac{(-\log t)^{n-1}}{1-t} dt = \sum_{r=0}^{n-1} \frac{(-\log z)^r}{r!} \operatorname{Li}_{n-r}(z)$$

Mahler measures

Let $P(x_1, ..., x_n)$ be an n-variable Laurent polynomial over \mathbb{C} .

$$m(P) = \frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} \log |P(e^{i\theta_1}, \dots, e^{i\theta_n})| d\theta_1 \cdots d\theta_n$$

(logarithmic) Mahler measure of P

For $P(x) = a \prod_{j} (x - \alpha_j)$, Jensen's formula yields

$$m(P) = \log|a| + \sum_{j} \log_{+}|\alpha_{j}|$$

where $\log_+ x = \max(0, \log x)$ as usually

For n>1, some Mahler measures are related to **polylogarithms**

Applications

• Volume bound: $\exists \, p \in M$ such that $i_p(M) > rac{1}{(n+3)\,\pi^{n-1}}$ and $\operatorname{vol}_n(M) > rac{\Omega_{n-1}}{n}\,rac{1}{[(n+3)\pi^{n-1}]^n}$

Remark. If M is non-compact with $m \geq 1$ cusps, then

$$\operatorname{vol}_n(M) \geq m \, rac{2^n}{n(n+1)} \, \operatorname{vol}_n(S^{\infty}_{reg})$$

 \bullet For M is compact,

$$i(M) \ge \frac{c(n)}{\left(\sinh(\operatorname{diam}(M))\right)^{\left[\frac{n+1}{2}\right]}}$$

- Gromov's invariant: For n=2,3 and n>>1, $||M||>\gamma_n$, where $\gamma_n:=\frac{\Omega_{n-1}}{8n^2}\frac{1}{\left\lceil (n+1)\pi^{n-1}\right\rceil^n}$
- Number of manifolds with volume bound:

In the estimate $V^{\alpha V} \geq \rho_n(V) \geq V^{\beta V}$ of [BGLM],

$$\log \rho_n(V) < \frac{n^2 \exp(23 n(n+1))}{\Omega_{n-1}} V \log V$$

Compare with Gromov's estimate

$$\rho_n(V) \le V \exp(\exp(\exp(n+V)))$$

Estimate of the Margulis constant

Let
$$n \geq 2$$
, $\nu = \left[\frac{n-1}{2}\right]$, and
$$c_{\nu} = \frac{2^{\nu+1}}{\pi^{\nu}} \cdot \frac{\Gamma(\frac{\nu+2}{2})^2}{\Gamma(\nu+2)} = \frac{2}{\pi^{\nu}} \int_0^{\pi/2} \sin^{\nu+1}t \, dt$$

THEOREM (K, 2002)

For each $\varepsilon \leq \varepsilon_n := \frac{c_\nu}{3^{\nu+1}}$, the thin part $M_{\leq \varepsilon}$ is a finite disjoint union of canonical cusps and tubes around closed geodesics of length $l \leq \varepsilon$ and of radius r satisfying

$$\cosh(2r) = \frac{1-3\kappa}{\kappa}$$
 , where $\kappa = \kappa(l) = 2(l/c_{\nu})^{\frac{2}{\nu+1}}$

Examples.
$$\varepsilon_2 = 2/3 \simeq 0.6666$$
 , $\varepsilon_3 = 1/18 \simeq 0.0555$ $\varepsilon_5 \simeq 0.0050$

Compare

•
$$\varepsilon_2 \ge \operatorname{arsinh}(1) \simeq 0.8813$$
 (P. Buser, 1978)

•
$$\varepsilon_3 \ge 0.104$$
 (R. Meyerhoff, 1987)

•
$$\varepsilon_n \ge \sqrt{3}/9\pi \simeq 0.0612$$
 for $n = 4,5$ (K, 2001, 2002)

Canonical cusps

Let Γ be a torsion–free discrete group of hyperbolic isometries so that $\Gamma_\infty\subset\Gamma$ is non–trivial.

Let $\Lambda \subset \Gamma_{\infty}$ be the *translational lattice*.

By Bieberbach: Λ of finite index and of rank n-1

Let $\mu \neq 0$ be a *shortest* vector in Λ :

$$B_{\infty}(\mu) := \{ x \in H^n \mid x_n > |\mu| \}$$

canonical horoball

Properties

- $B_{\infty}(\mu)$ precisely invariant
- $C = B_{\infty}(\mu)/\Gamma_{\infty} \subset M$ canonical cusp
- Canonical cusps are pairwise disjoint

Some global results

Let M be a complete hyperbolic n-manifold. By Margulis-Zassenhaus,

$$\exists\,arepsilon=arepsilon_n>0$$
 : $M=M_{>arepsilon}\cup M_{\leqarepsilon}$ with $M_{>arepsilon}=\{p\in M\mid r_p(M)>arepsilon/2\}$, $M_{\leqarepsilon}=M\setminus M_{>arepsilon}$

Components of $M_{\leq \varepsilon}$

- tubes T around short simple closed geodesics g \approx ball bundles over S^1
- ullet cusp neighborhoods $C pprox N^{n-1} imes \mathbb{R}_{>0}$