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Triangulated hyperbolic 5—folds

THEOREM (A. Goncharov)

Let M be an oriented hyperbolic 5—manifo|d_of finite
volume. Then, there are finitely many 2z, € Q,7 € I,
satisfying

Y {z}®z=0 in GQ®Q*

iel
such that

vols(M) =q Y _ L3(z) for some g € Q" (%)

iel
Here, {z} € G(F) where for any number field F

GOy — Z[Py(F)]

5
< 3 (“DF[r2(a1,e s Baye -, 25) 1, (0], [o0] | 22 7 5 >
k=1



About hyperbolic sphere packings

Consider a packing B of r—spheres in hyperbolic space
H™. Let B € B and consider its Dirichlet—Voronoi—cell

D(B)= {p€ H" | d(p,B) < d(p,B’), VB' € B}

The local density Id(B,D) of a ball B w.r.t. D is
defined by

vol,(B)
voln(D) °

Packings are dense if all local densities are as close to
1 as possible. There is the following bound.

1d(B, D) := 1

Theorem. (K. Borocky senior)

VB € B : 1d(B,D) <dn(r) = (n+1) VOl (B N Sreg(2cx)

VOl (Sreg(2ax))
Equality holds if and only if B are the in—balls of the

cells of a regular tesselation {m,3,...,3} of H" (i.e.
by regular simplices of dihedral angles «/m).

These tesselations exist precisely for (n,m) = (2,p)
for p>7, (3,6) and (4,5) (H.S.M. Coxeter).

Problem. Prove that the simplical density function
d,(r) is strictly monotonely increasing

Geometric application. (K, 2003)

The coset space of H* by the cocompact arithmetic

Coxeter group
5

O O O ©) O

is the minimal volume complete hyperbolic 4—orbifold.



Some global results

Let M be a complete hyperbolic n—manifold. By
Margulis—Zassenhaus,

Je=e, >0 : M=Ms.UM< with

Components of M.

e tubes T around short simple closed geodesics g
~ ball bundles over S?!

e cusp neighborhoods C =~ N™"1xR.g



Canonical cusps

Let ' be a torsion—free discrete group of hyperbolic
isometries so that ' C I is non—trivial.

Let N C T be the translational lattice.
By Bieberbach: A of finite index and of r‘ank n—1

Let u# 0 be a shortest vector in A
Beo(p) :={z € H" | an > |u| }

canonical horoball

Properties
e DB, (u) precisely invariant
e C =Bw(u)/Few CM canonical cusp

e Canonical cusps are pairwise disjoint



Estimate of the Margulis constant

Let n > 2, l/:[ﬂg-l-] , and

oot T(EEEY o em/2 a1
o= rn == Jo sintThedt

THEOREM (K, 2002)

For each e < g, = 35’;1, the thin part M<. is a finite
disjoint union of canonical cusps and tubes around
closed geodesics of length I < e and of radius r satis-

fying
cosh(2r) =125 where «k=r(l) =2(/c,)=

Examples. ¢, =2/3~0.6666 , ¢3=1/18 ~ 0.0555

es ~ 0.0050
Compare
e ¢ > arsinh(1l) ~0.8813 (P. Buser, 1978)
e £3>0.104 (R. Meyerhoff, 1987)

o &,>+3/97 ~0.0612 for n= 4,5 (K, 2001, 2002)



Applications

e Volume bound : dpe M such that
ip(M) > W and voln(M) > Q;—l

1
[(n+3)m=1]"

Remark. If M is non-compact with m > 1 cusps,
then

on o
VOIn(M) Z m m VOIn(Sreg)

° For M is compact,

. c(n)
i(M) 2 (sinh(diam (M)

° Gromov’s invariant: Forn=2,3 and n>> 1,
-1 1

M| >~ , where ~,:= -
” ” Y gt 8n?2 [(n—i—l)ﬂ'n_l]

e Number of manifolds with volume bound:]
In the estimate VY > p, (V) > VAV  of [BGLM],
n? exp(23n(n+ 1))

log pn(V) < ViogV
Qn—l

Compare with Gromov'’s estimate
on (V) < Vexp(exp(exp(n + V)))



Mahler measures

Let P(x1,...,z,) be an n—variable Laurent polyno-
mial over C.

dfy - - - do,

1 27 27 ” 0
m(P) = / / log | P(e™,...,e")
e Jo o 0

(logarithmic) Mahler measure of P

For P(z) =a [](z — «;), Jensen's formula yields
J

m(P) =logla| + ) 1094 | o]
J

where logy z = max (0,logz) as usually

For n > 1, some Mahler measures are related to poly-
logarithms



An(2) =

Mahler measures for few variables
The exemplary results of Chris Smyth (1981)

3V3 = /=3\ 1
® 7Tm(1+:v+y)———47r L(X—3>3)—nE=1 (7)‘7;
1 1 1
BTt

Consider the 3—variable polynomial

Pa,b,c(xa Y, Z) L= a+b$_1+cy+(a’+bx+cy)z , a,b,c € R :

o mm(l4+z+y+2)=7(3)/2
o mm(l+zt+y+(1+z+y)z)=14((3)/3

Hints for the proof
o Relate m(P,p.) to m(Poc1) and m(Pip.c)

o mm(Poc1) «— —Re]/] Log(:c—l-y)‘i—m%?i
e} Wzm(Pl,b,c) —> —Re ff Log(l_'_x_*_y)i_w dy

o For n = 2,3, compare with

1 * (=Logt)»t = = (~Logz)" .
(n—1)! /0 1—¢ di = Z Lin_r(2)

r=0



AN n—variable Mahler measure

Theorem (Smyth, preprint 2003)

Let n > 3. Then,
m((:Ul -+ CBII) s (mn—Q + x;ig) -+ 2n—3(xn_1 + xn)) —

(n—3) log2+(2)" " i Fa({3,3,3,1,.., 11, {3,..., 3}, 1)

Here, the generalised hypergeometric function ,F;,
is defined by

(a1)k -~ (ar)i 2"
(b1)k - - - (bm) i k!

with (a)r :=ala+1)---(a+k—-1)

rFm({al, ceey ar}, {bl, Cey bm}, z) — Z
k=0

Corollary.
m(l4+z+y+2)=24F(3,3,3,1},{2,2,2},1)

= 52 ¢(3)
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