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Relations to characteristic invariants

F. Hirzebruch, 1991: “Kombinatorik in Geometrie "

Euler characteristic, Betti numbers, signature, ..
of certain algebraic and topological varieties are
related to tangent numbers and Euler numbers

° By previous result, the Euler-Poincaré character-
istic of a triangulated manifold of even dimension is
expressible in terms of tangent numbers

° Let A be a principally polarised n—dimensional
abelian variety and D a theta divisor associated to the
polarisation.

D is of complex dimension n—1 and in general smooth.
Its holomorphic Euler-characteristic x*(D) with co-
efficients in the sheaf of germs of holomorphic k—forms
for 1<k <n-—1 can be computed by means of the
Theorem of Riemann—Roch—Hirzebruch and iden-
tified with Euler numbers

The signature of the (2n — 2)—dimensional smooth
manifold D is expressible in terms of tangent numbers

Through the action of A on itself arise r theta-divisors
in general position with intersection D . This is a
smooth variety of dimension n — r whose arithmetic
genus is related to the Stirling number S7, i.e. to the

number of partitions of a set with n elements into r
disjoint non-empty subsets



Further results in even dimensions

° K, 1991 :
Reduction formulas for d—truncated orthoschemes

with 0<d <2 in H?»

° Thomas Zehrt, PhD thesis, 2003 :
Various reduction formulas and applications
without use of Schlafli's differential formula
of the type

n

2K"™ : .
VOla, (P) = (F2) aipp_ni1 (F%
Voo (52 VO'2 (P) ; 0 (F<) agn-2i-1(F)

Example For cubes W C X"

2K"
VOlo, (527)

VOlon, (W) = Z (—1)'Ey; won—2i—1 (W)
i=0

Euler numbers E>; =1,1,5,61,1385,50521,...

0

p— K’L 1
cos(Kz) ; (24)! ®
i—1 on
Eo =1 , (—1)z Egz' = Z (—1)v+l (21)) E2v

v=0



Rational Simplex Conjecture of Schlafli
(Cheeger-Simons)

Let n > 3. The following list contains ALL simplices

in S™ such that

e angles in ]0,n] are commensurable with =«
e volumeis commensurable with vol,(S") = 2x"% /I (2£L)

TYPE

n=3

VOLUME/ vol,(S™)

1/60
1/192
1/576
7200
191/7200
1/360
1/1800
19/1800

- 1/1200

11/1200
49/1200
191/1800
191/1200

1/(n+1)!
1/2"+ (n4-1)!



Volumes in even dimensions
Reduction formulas

In X% of curvature K = %1, normalise volume
2n+1

n=-———-VOl, |,
f vol,(Sn) Vo

for=1

THEOREM (Schlafli's Reduction formula)

Let S C X2" be a simplex with scheme <. Then,

K™?2 fo,(X) = Z( 1)kay, Z fon—r+1)(0) 5 Y fu=1 |

k=0

where o runs through all ell|pt|c subschemes of order
2(n — k), and

tanax = x2k+1

Z (2k + 1

Tangent numbers a, are expressible in form of

k1 22k+2 -1
ar = 2 P By =1,2,16,16-17,256-31,......

Application
On S3, there is the period of orthoschemes given by
a,fB,vy,7/2—a,b, /2 —c

allowing to compute, e.g., the volumes of all spherical
Coxeter simplices



‘The many aspects of hyperbolic volume

dilogarithms

Dedekind (7 (2)

Hilbert's 3rd Problem Borel regulator

Milnor's Conjecture | hyperbolic Mahler measure
for JI, 3—volume | in 2 variables

central charges link invariants,
of RCFTs knot complements and
....... Kashaev's Conjecture



Triangulated hyperbolic 3—folds

THEOREM (Thurston, Neumann—2Zagier,...)

Let M be an oriented hyperbolic 3—manifold of finite
volume. Then, there are finitely many z € Q,i eI,
satisfying

Z zi/\(l—zz-) =0 in /\QQX (%)
i€l
such that
Vola(M) =} _ La(2)

el

Dehn invariant of a polyhedron

For P C H3 with edges of length I and attached di-
hedral angle o; :

AP)= ) 1®ucR®zR/2nZ
ledgeof P

extendable to asymptotic polyhedra (cut off ideal ver-
tices by means of small horospheres and measure then
length of truncated edge)

Example

A(Sw(2)) =2{log |l —2|® argz — log |z| ® arg(1 — z)}
=2zA(1—-2)—zZA(1-2) where

R®z R/277Z = /\Q(CCX)‘ Cr®6 mod 27 — —e" Ae¥



Kashaev’s volume conjecture

R. Kashaev: Hyperbolic 3—volume of link comple-
ments of S3 should equal classical limits of Kashaev's
link invariant defined by quantum dilogarithms (true
for the knots 41, 52, 61)

H. Murakami—J. Murakami: Kashaev's invariant is
a specialisation of the colored Jones function evalu-
ated at special values

Example For the Figure Eight—knot 44

&

the N-th colored Jones polynomial equals (Habiro—Le)

N-1 k
In(a1t) = 3 T (VD2 O +D/2) (4(N=0D/2_y=(N=3)/2)
k=0 j=1

and has the asymptotic behavior for fixed r ¢ N

log |Jn(41; exp(2mir/N)|

27 Iim
N—oo N
_ %{le(mw(r) /2)— o (rn—6(r)/2) } = V°'3(S: \4)

with 6(r) € N satisfying cosé(r) = cos(2nr) —1/2

r=1: R. Kashaev ; r>1: H. Murakami



Some arithmetic link complements

e Borromean ring complement B = S3 \ 63

vol3(B) = 2vo|3(0$gg(g)) — 16 JI(%) ~ 7.3276

e Whitehead link complement W = §3 \ 52

TEeg

vol3(W) = vols (O (g)) = 8JI(—Z) ~ 3.6638

e Figure Eight knot complement E = S3 \ 4,

vol3(E) = 2vol3(S7?§g(g)) = 6JI(§) ~ 2.0298

V3
=?§Q(\/_—3)(2) ,  Where

in general, for an imaginary quadratic number field
F = Q(v/—d), d > 1 squarefree, with ring of integers
04, the covolume of the discrete subgroup PSL(2,0,)
of PSL(2,C) is given by Humbert's formula

. d3/2 d3/2 > —d\ 1
vols(H?/PSL(2,00) = 7 oov=a (D =57 > ()

r=1 T

C. Smyth, 1981:

oo

2 ()7 =vonm

r=1

2rm(l + x4+ y) =

E



Generalised 3rd Problem of Hilbert

Problem : P, P, C X3 scissors congruent
if and only if
volz(P1) = volz(P2) , Dehn(P;) = Dehn(P,)

where
Dehn(P)= Z I(F)®ar € R®y R/nZ
F

THEOREM (J. Dupont—C.H. Sah)

Consider Su(2) = (00,0,1,exp(27mi/n)) CH3, n > 7.
Let 6 €], 5[ so that J(6r) = Jla(w/n) = Lvols(See(2)) .

Then, there is the following alternative :

(1) 6eR—-Q, i.e. Dehn(Sx(8)) # 0, and hence

there is a pair of hyperbolic tetrahedra with

equal volume and different Dehn-invariant

(2) 0€Q, i.e. Milnor's Conjecture is false



Milnor’'s Conjecture

Let {6;} C Qmr:
Every Q-linear relation

> gl(6;) =0 with g¢;€Q
J

iS a consequence of the relations

Jo(x+7) = Ja(z) , Ja(—z) = Ja(x)

Jo(nz) =n Z J(z + I%T)

kE mod n

distribution law



T he formula of Cho—Kim

Let T be a hyperbolic tetrahedron with dihedral angles
A B,C;, D,E,F.

For solutions (Pl,Ql,Rl,Sl,Tl) , (PQ,QQ,RQ,SQ,TQ) of
P+Q=B,R+S=F,Q+R+T = F+n, P+S4+T = C+,

1 —Ccos D — COs P Cos B cosC
—cosD 1 cos(R+T) cosF Cos E
—CcosP cos(R+T) 1 —cosQ cos(S+T) | =0
cos B COS F — Cos Q@ 1 — COS A
cosC cos E cos(S+T) —cosA 1

2vol3(T) = J2(Py) — J12(Q1) + JIo(R1) — JI2(S1)—
—J (=G — Q) 4 (BB AT 4 )+
+ I (F=GEEE — Ry) — U (A=ESFET 4 Ry
—J2(P2) + J2(Q2) — JIo(R2) + JIo(S2)+
+IL(F=GHE — Q2) — Jp(B=E5FET 4 ) -

—Jp(F=GPET — Ry) 4 JIp(4=E5F4m 4 Ry



VVolumes of hyperbolic tetrahedra

Formula of Milnor Let S, (z) be an ideal tetrahedra
with vertices o0,0,1 and z € C\R.

E3

+ a V

Q
—
N
DR

"
(4
L4
'l
[ 4

By decomposition into (three pairs of isometric) or-
thoschemes, Lobachevsky's formula yvields

VOI3(Seo(2)) = D(2) = Jo(a) + JI2(8) + JI(v)

a=argz , FB=arg(l-1/z) |, vy=7m—(a+ B)



Hyperbolic volume in dimension three

Formula of Lobachevsky For an orthoscheme R C H3,

vols(R) = —{J12<a+9)—J12(a—9)+J12( + 8- 0)+

+ JL(E- ~6)

+I2(5 — 8- 0) + Ja(y+6) — (v #0)}

(cos? B —sin®a sin? ) 1/2 -

0 < 6 = arctan < il
COS . COS 7y 2

Jx(z) = —/ log|25int|dt=—/ log |1 — exp(2it)|dt

1 Z S'”(Q’“’” —;—Im Liz(e2)

denotes the (slightly modified) Lobachevsky function
belonging to the family of polylogarithms



Polylogarithms

Classical polylogarithms (Leibniz, Johann Bernoulli)

. _r
Lin(x)=3_ = , 2€C with |s<1
r=1

z

Lii(z) = —1og(1 — 2) ; Lin(z) = / Lin,—1(t)dlogt
0

Lobachevsky functions Let o€ R.

o0

1 , : 1 sin(2ra)

JI = ZImLiy(e®®) = = E _
2(05) 2 2(6 ) 2 r=1 7"2

1 . gian 1 = cos(2ra)
JI3(O{) = Z Re L|3(€ ) = Z E 3

r=1

Modified polylogarithms (Bloch—Wigner, Goncharov...)

L1(z) = Re logz = log |z|
D(z) = L2(z) =Im{ Liz(2) — Li1(2) log |z|}
L3(z) = Re{Liz(z)—Liz(z) log |z|+1Lii(2) log? |z|}

5
Z (_1)"",62(7“2(2«’1, “e ,Z/’}, cen ,z5)) =0 for z ;& zi
k=1

b—term relation of Spence—Abel



Proving Schlafli’s Formula

e Let Se H" be a simplex bounded by hyperplanes
Ho, ..., Hy, with vertices p; opposite to H; for 0 < i < n.

e Deform S by means of an infinitesimal parallel dis-
placement of Hgy along the line [ = N H;. Then,
only the dihedral angle a = A(Ho,Hl) attached at
the codimension 2 face F = SﬂHoﬂHl varies.

IsY a+do

vola(Q) = —dao

° Let m be the line through p; with m L Hy. An
infinitesimal displacement along I moves Hy into the
same position as an infinitesimal displacement along
mnt.

e dvol,(S) =volume of the infinitesimal wedge
determined by pi, F and slice Q

== dVoln(S) = 25 Vol,_2(F) - volo(Q)
= =L vol,_2(F) da



Schlafli’s Differential Formula

THEOREM (Ludwig Schl4fli, 1852)

Let S C X7 denote a non-euclidean n-simplex
with dihedral angles ap at (n—2)-dimensional
faces FFC S. Then,

K
n—1

dvol,(8) = Y vol, >(F)dap |
F

where K € {£1} is the curvature of X% and
where volg(S) ;=1

Consequence

Parity difference n=1(2) «— n= 0(2)



Coxeter—Vinberg—Schlafli schemes

A scheme X is a weighted graph, e.g. of the form

r /O

o oo

o hyperplane H
;
o—0 Z(HZ,Hk)ZZTE for r> 2
ik
(87
o—o0 Z(H;, H,) = «
i k
o—o0 Z(Hi, Hy) = %
o O H; 1 H,

Important and simplest examples

Linear graphs of order n+ 1 are orthoschemes in X%
for K = 41 iff Gram(X) is positive definit (X elliptic)
for K = —1 iff Gram(X) is of signature (n,1)



Polytopes and orthoschemes

In X3 C Y™t (vector space model)
P =Ny H~ convex n—polytope

H;~ closed half-space bounded by H; = e}

1

Gram matrix  G(P) = (< e, ej >ym)ijer

A realisation criterion. (E. Vinberg)

Let G = (g;;) be an indecomposable symmetric matrix
of order m, of rank n 4+ 1 with 9i: = 1 and g;; <0 for
t 7 j. Then G is the Gram G(P) of an acute-angled
polytope P C X™ of finite volume defined uniquely up
to isometry. In particular,

(1) if G is positive definite (elliptic), then m = n—+1,
and P is a simplex on the sphere S

(2) if G is positive semidefinite (parabolic), then m =
n+ 2, and P is a simplex in Entl:

(3) if G is of signature (n,1) (hyperbolic), then P is
a convex polytope in H™ with m facets.

If P has many right dihedral angles, i.e. for many <, j
holds cosa;; = — < e;,e;j >= 0, then P best inter-
preted through its

Coxeter-Vinberg-Schiafli scheme =(P)



Models of hyperbolic geometry

e Lorentz—Minkowski vector space model E™1

e Poincaré upper half space model H" C Ei

hyperbolic distance d(p,q) = | log gl :



