
On an algorithm to determine the geometric structure of a
3-manifold from its simplicial decomposition

Jun Murakami1

Abstract. An idea to get an algorithm to determine the geometric
structure of a 3-manifold is proposed.
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1. Geometric structure determined by a volume function

Let M be a 3-manifold and T be a simplicial decomposition of M , and T1, T2,
· · · , Tt be the tetrahedra of T . Parameters corresponding to the dihedral angles of
the tetrahedra of T are given. There are 6t parameters. Assume that the sum of
parameters around every edge of T is equal to 2π. Therefore, there are 6t − e free
parameters, where e is the number of edges in T . Let

P (T ) =
t∑

i=1

P (Ti),

where P (Ti) is a complex number defined in the next section, whose imaginary part
is equal to the volume of Ti if Ti can be realized as a hyperbolic tetrahedron.

Algorithm. Obtain a critical point of P (T ) with respect to the 6t − e free pa-
rameters. Then the geometric structure of each tetrahedra given by the parameters
corresponding to the critical point may give the geometric structure of M .

The geometric structure of each tetrahedra is given separately. The above state-
ment claims that the adjacent tetrahedra wrap over evenly at each adjoining edge.
This claim is based on the following argument.

Let E be an edge of T and Ti(1), Ti(2), · · · , Ti(k) be the tetrahedra containing E.
We parametrize the dihedral angles of these tetrahedra at E by α1, α2 − α1, · · · ,
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αk−1 − αk−2, 2π − αk−1. Then the equations to get the critical point of P (T ) are
the following.

P (T )
dαi

= 0, (i = 1, 2, · · · , k − 1)

such equations for other edges.
(1)

Let β1 = α1, β2 = α2 − α1, · · · , βk−1 = αk−1 − αk−2, βk = 2π − αk−1, which present
the dihedral angles at the edge E. Then (1) is equivalent to the following.

P (Ti(1))
dβ1

=
P (Ti(2))

dβ2
= · · · =

P (Ti(k))
dβk

,

β1 + β2 + · · · + βk = 2π,

such equations for other edges.

(2)

If Ti(j) (j = 1, 2, · · · , k) are all hyperbolic tetrahedra, Schläfli’s relation

Im P (Ti(j))
βk

= −
1
2

(length of E) (j = 1, 2, · · · , k)(3)

implies that (2) means that the lengths of the edge E obtained from the geometric
structure of adjoining tetrahedra are equal, and so we can glue the structures of
these tetrahedra.

Problem 1. If all the tetrahedra of T is realized as hyperbolic tetrahedra at the
critical point, the above argument shows that the hyperbolic structure of M is
actually determined. Extend this fact to the other structures.

Problem 2. The set of critical points are not discrete nor finite. How to find an
appropriate critical point which is good for determine geometric structure? Does an
appropriate critical point always exist?

Remark. An algorithm to determine the geometric structure from Schläfli’s relation
is also given by A. Casson several years ago [1]. His algorithm is to move the length
of edges, and keep the total space to be a cone manifold. On the other hand,
algorithm presented here is to vary the structure of each tetrahedron separately,
and don’t care about the structure of the total space at the beginning. The local
structures eventually extend to the total space at the critical point.



2. Volume of a hyperbolic tetrahedron

A formula for the volume of a generic tetrahedron is given in [2]. Here we propose
another formula, which is numerically checked for various examples.

Let T be a tetrahedron whose dihedral angles are A, B, C, D, E, F , where A, B,
C correspond to the three edges containing a common vertex, and D, E, F are the
angles at the opposite positions of A, B, C respectively. Let a = exp

√
−1(π − A),

b = exp
√

−1(π − B), · · · , f = exp
√

−1(π − F ), and V (z, a, b, c, d, e, f ) be

V (z, a, b, c, d, e, f) =

Li2(z) + Li2(z a b d e) + Li2(z a c d f) + Li2(z b c e f)

− Li2(z a b c) − Li2(z a e f) − Li2(z b d f) − Li2(z c d e),

where Li2(x) is the dilogarithm function defined by the analytic continuation of the
following integral.

Li2(x) = −
∫ x

0

log(1 − t)
t

,

where x is a real positive number.
Consider a equation

dV (z, a, b, c, d, e, f)
dz

= 0.(4)

This equation has three solutions, and one solution is the trivial one, i.e. z = 0. Let
z0 and z′

0 be the remaining two non-trivial solution of (4). Let

P (T ) =
V (z0, a, b, c, d, e, f) − V (z′

0, a, b, c, d, e, f)
2

(5)

Then the following is expected.

Conjecture. (joint with M. Yano) If T is realized in a hyperbolic space,

Volume of T = |Im P (T )| .

This formula is obtained from the quantum 6j-symbol related to the representation
theory of Uq(sl2). The volume conjecture of 3-manifolds suggest that certain limit
of the Witten-Reshetikhin-Turaev invariant of a hyperbolic 3-manifold, say M , may
relate to its hyperbolic volume. The absolute value of the square of this invariant
is equal to the Turaev-Viro invariant, which comes from a simplicial decomposition
of M . First, assign parameters to each edges of the decomposition, then assign
6j-symbols to each tetrahedron, and then take the state sum over all assignment



of parameters, then we get the Turaev-Viro invariant of M. Therefore, it may be
natural to expected that there may be some relation between the 6j-symbol and the
hyperbolic volume of a hyperbolic tetrahedra. After computing several examples, we
conclude that (5) may hold. This formula is proved for a ideal tetrahedron, which
is a tetrahedron whose vertices are all located at the infinity.

If T is realized in a Euclidean space, P (T ) is equal to 0. If T is realized in 3-sphere
S3, the real part of P (T ) instead of the imaginary part seems to relate the volume.
Therefore, the critical point of the function P (T ) of a simplicial decomposition T
of a 3-manifold M may relates to its geometric structure.
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