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Abstract. A new formula for the volume of a hyperbolic and
spherical tetrahedron is obtained from the quantum 6j-symbol.
This formula is of symmetric form with respect to the symmetry
of the tetrahedron.

Introduction

A formula for the volume of a generic hyperbolic tetrahedron is given
in [1]. In this paper, we give another formula, which is symmetric with
respect to the permutation of the vertices of a tetrahedron. Our for-
mula comes from the quantum 6j-symbol [5]. The actual formulation
of the quantum 6j-symbol is given in Section 4. Shortly, the quantum

6j-symbol
{

i j k
� m n

}
is a number defined for six spins i, j, k, l, m, n

assigned to the edges of a tetrahedron as in Figure 1 . The spins corre-
spond to representations of the quantum enveloping algebra Uq(sl2), and
this number is defined as a certain amplitude of a sequence of coupling
and decoupling of representations corresponding to the tetrahedron.

The relation between the volume of a hyperbolic tetrahedron and
the quantum 6j-symbol is expected by the following observations.

(1) R. Kashaev conjectured in [2] that the hyperbolic volume of the
complement of a hyperbolic knot is equal to certain limit of the
invariants defined by quantum R-matrices he constructed from
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Figure 1: The six parameters i, j, k, l, m, n.

quantum dilogarithm functions. These invariants are turned out
in [7] to be specializations of colored Jones invariants. More-
over, in [6], it is observed that the volume of a hyperbolic man-
ifold given by the Dehn surgeries along the figure-eight knot is
obtained by applying Kashaev’s method of computation to the
Witten-Reshetikhin-Turaev invariants.

On the other hand, Turaev and Viro constructed a 3-manifold
invariant in [11] by using a simplicial decomposition. It is de-
fined by assigning the quantum 6j-symbol to each tetrahedron of
the decomposition. In [9], it is shown that this invariant is al-
most equivalent to the Reshetikhin-Turaev invariant, which seem
to have some relation to the hyperbolic volume. Hence there may
be some relation between the quantum 6j-symbol and the volume
of a hyperbolic tetrahedron.

(2) A relation between the volume of a Euclidean tetrahedron and
certain asymptotics of the classical 6j-symbols is conjectured by
Ponzano and Regge in 1968, and proved by [10] in 1999. The
classical 6j-symbol is defined similarly as the quantum 6j-symbol
from the representations of the Lie algebra sl2. This formula is
quite surprising because the volume of the Euclidean tetrahedron,
which is a basic quantity of geometry, is dominated by numbers
coming from algebraic settings. Generalizing this relation to a hy-
perbolic and a spherical tetrahedron may reveal some fundamental
relation between geometry and algebra we haven’t noticed yet.

Encouraged by the above speculations, we started to apply Kashaev’s
method of computation to the quantum 6j-symbol, and then we get the
following formula.

Let T be a hyperbolic tetrahedron whose dihedral angles are A, B,
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C, D, E, F . Assume that A, B and C are the angles at the three edges
having a common vertex, and D, E and F are the angles at the opposite
position of A, B and C respectively as in Figure 2. Let a = exp

√
−1 A,

b = exp
√
−1 B, · · · , f = exp

√
−1 F and let U(z, T ) be the function

U(z, T ) =
1
2

(Li2(z) + Li2(z a b d e) + Li2(z a c d f) + Li2(z b c e f)

−Li2(−z a b c) − Li2(−z a e f) − Li2(−z b d f) − Li2(−z c d e)) ,
(0.1)

where Li2(x) is the dilogarithm function defined by the analytic contin-
uation of the following integral.
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Figure 2: The six dihedral angles A, B, C, D, E, F of T .

Li2(x) = −
∫ x

0

log(1 − t)
t

dt for a positive real number x. (0.2)

Let z1, z2 be the two non-trivial solutions of the equation

d

dz
U(z, T ) =

π
√
−1

z
k (k ∈ Z). (0.3)

Let

∆̃(a, b, c) = −1
4

(
Li2(−a b c−1) + Li2(−a b−1 c) + Li2(−a−1 b c)

+ Li2(−a−1 b−1 c−1) + (log a)2 + (log b)2 + (log c)2
)
, (0.4)

∆(T ) = ∆̃(a, b, c) + ∆̃(a, e, f) + ∆̃(b, d, f) + ∆̃(c, d, e)

+
1
2

(log a log d + log b log e + log c log f) ,
(0.5)
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and
V1(T ) = U(z1, T ) + ∆(T ),
V2(T ) = U(z2, T ) + ∆(T ),

V (T ) =
U(z1, T ) − U(z2, T )

2
.

(0.6)

Let Vol(T ) denote the hyperbolic volume of T . Then we get the follow-
ing.

Theorem 1. The volume Vol(T ) of a hyperbolic tetrahedron T is
given by the following.

Vol(T ) = Im V (T ). (0.7)

In the following theorems, the solutions z1 and z2 in the definitions
of the functions V , V1 and V2 are chosen adequately.

Theorem 2. The volume Vol(T ) of a hyperbolic tetrahedron T is
given by the following.

Vol(T ) = Im V1(T ) = − Im V2(T ). (0.8)

Theorem 3. By taking an appropriate branch of U(z, T ), we have

Re V (T ) = 0.

and

Vol(T ) = −
√
−1 V (T ). (0.9)

Theorem 4. Let T be a tetrahedron T in S3 with the constant
curvature 1. Then the volume Vol(T ) is given by

Vol(T ) = V (T ). (0.10)

Acknowledgement. The authors would like to give our thanks to H.
Murakami, M. Okamoto, T. Takata, and Y. Yokota for useful discus-
sion about the relation between quantum 6j-symbols and the hyperbolic
volume. They also thank to A. Ushijima who informs them several
known results, including [1]. They appreciate the software Mathemat-
ica (Wolfram Research) which enables them to accomplish the actual
computations.
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1 Some property of the formula

1.1 Quadratic equation for z1 and z2

The equation dU/dz = π k
√
−1/z is investigated. dU/dz is computed

as follows:

d U(z, T )
dz

=

− 1
2 z

(log(1 − z)+ log(1−a b d e z)+log(1−a c d f z)+log(1−b c e f z)−

log(1 + a b c z) − log(1 + a e f z) − log(1 + b d f z) − log(1 + c d e z)) ,

(k ∈ Z).
(1.1)

Hence dU/dz = π k
√
−1/z is equivalent to the following equation:

log(1− z) + log(1− a b d e z) + log(1− a c d f z) + log(1− b c e f z) =
log(1 + a b c z) + log(1 + a e f z) + log(1 + b d f z) + log(1 + c d e z)

+ 2π
√
−1 k. (1.2)

Any solution of the above equation must be a solution of the following
equation.

(1 − z)(1 − a b d e z)(1 − a c d f z)(1 − b c e f z)
− (1 + a b c z)(1 + a e f z)(1 + b d f z)(1 + c d e z) = 0. (1.3)

The constant term is equal to 0. We put

h(z) = −1
z

((1 − z)(1 − a b d e z)(1 − a c d f z)(1 − b c e f z)−

(1 + a b c z)(1 + a e f z)(1 + b d f z)(1 + c d e z)) (1.4)

Then the equation

h(z) = 0 (1.5)

is a quadratic equation. Let α, β, γ be the coefficient of h(z) of degrees
0, 1, 2 respectively. Then

α = 1 + a b d e + a c d f + b c e f + a b c + a e f + b d f + c d e,

β = −a b c d e f

(
(a − 1

a
) (d − 1

d
) + (b − 1

b
) (e − 1

e
) + (c − 1

c
) (f − 1

f
)
)

,

γ = a b c d e f (a b c d e f + a d + b e + c f + a b f + a c e + b c d + d e f).
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Note that

γ = (a b c d e f)2 α,

β

a b c d e f
= a real number,

(1.6)

since the absolute values of a, b, · · · , f are all equal to 1, and so
β2

α γ
is

a non-negative real number.

Lemma. Let A, B, C, D, E, F be the dihedral angles of a hyperbolic
tetrahedron as in Figure 2. Let z1, z2 be the solutions of the equation
h(z) = 0. Then

|z1| = |z2| = 1.

Proof. Let Gram(T ) be the Gram matrix of T defined by

Gram(T ) =




1 − cos A − cos B − cos F
− cos A 1 − cos C − cos E
− cos B − cos C 1 − cos D
− cos F − cos E − cos D 1


 . (1.7)

Since T is a tetrahedron realized in a hyperbolic space,

det Gram(T ) < 0. (1.8)

Putting a = exp
√
−1 A, b = exp

√
−1 B and so on,

Gram(T ) =


1 −(a + a−1)/2 −(b + b−1)/2 −(f + f−1)/2
−(a + a−1)/2 1 −(c + c−1)/2 −(e + e−1)/2
−(b + b−1)/2 −(c + c−1)/2 1 −(d + d−1)/2
−(f + f−1)/2 −(e + e−1)/2 −(d + d−1)/2 1


 .

(1.9)

Let D be the discriminant of the equation h(z) = 0, i.e. D = β2−4 α γ.
Let β1 be the real number defined by

β1 =
β

a b c d e f
.
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Then
D = (a b c d e f)2

(
β1

2 − 4 |α|2
)

An actual computation shows that

D

16 (a b c d e f)2
= det Gram(T ). (1.10)

This and (1.8) implies that

β1
2 − 4 |α|2 < 0. (1.11)

The solutions z1, z2 are given by

z1, z2 =
−β ±

√
β2 − 4 α γ

2 γ
= a b c d e f

−β1 ±
√

β1
2 − 4 |α|2

2 γ
,

and so (1.11) implies that

|z1|2 = |z2|2 =
∣∣∣∣αγ

∣∣∣∣
2

.

Since

|α/γ| =
∣∣∣∣1 + a b c + a b d e + a c d f + a e f + b c e f + b d f + c d e

1 + a b c + a b d e + a c d f + a e f + b c e f + b d f + c d e

∣∣∣∣ = 1,

we have |z1| = |z2| = 1. q.e.d.

1.2 Lobachevsky function

The Lobachevsky function Λ(x) is defined for real x by the following
integral.

Λ(x) = −
∫ x

0
log |2 sin t|dt. (1.12)

Note that Λ(x) is a periodic function with period π. It is known (see
e.g. [4]) that

Im Li2(exp
√
−1x) = 2 Λ(

x

2
). (1.13)

From the remark at the last subsection, we can rewrite V (T ), V1(T )
and V2(T ) for a hyperbolic tetrahedron T as follows. Let Z1 = arg z1,
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Z2 = arg z2, and W1 = A + B + C − π, W2 = A + E + F − π, W3 =
B + D + F − π, W4 = C + D + E − π be the halves of the solid angles
at the four vertices. Let

UΛ(T, Z) = Λ(
Z

2
) +

Λ(
Z + W1 + W4

2
−C) + Λ(

Z + W1 + W3

2
−B) + Λ(

Z + W1 + W2

2
−A)

− Λ(
Z + W1

2
) − Λ(

Z + W2

2
) − Λ(

Z + W3

2
) − Λ(

Z + W4

2
), (1.14)

∆̃Λ(W, A, B, C) =
Λ(W ) − Λ(W − A) − Λ(W − B) − Λ(W − C)

2
,

(1.15)

∆Λ(T ) = ∆̃Λ(
W1

2
, A, B, C) + ∆̃Λ(

W2

2
, A, E, F ) +

∆̃Λ(
W3

2
, B, D, F ) + ∆̃Λ(

W4

2
, C, D, E), (1.16)

V1,Λ(T ) = UΛ(T, Z1) + ∆Λ(T ), (1.17)

V2,Λ(T ) = UΛ(T, Z2) + ∆Λ(T ). (1.18)

VΛ(T ) =
UΛ(T, Z1) − UΛ(T, Z2)

2
(1.19)

Then all the absolute values of VΛ(T ), V1,Λ(T ) and V2,Λ(T ) coincide
with the volume Vol(T ).

2 Volume of a tetrahedron with some ideal ver-
tices

In this section, the case that some of the vertices of T is an ideal one,
i.e. some of them are located at infinity.

8



2.1 Tetrahedron with one ideal vertex

Let v be such vertex and assume that v is the end point of the edges
corresponding to A, B, C. In this case, A, B and C satisfy

A + B + C = π (i.e. W1 = 0) (2.1)

Let parameters a, b, c, d, e and f be as before. Then (2.1) implies

a b c = exp
√
−1 π = −1.

Therefore, one of the solution of (1.5), say z1, is equal to 1. Obtain the
volume of T by (1.17).

UΛ(T, 0) =

Λ(
W2

2
−A) + Λ(

W3

2
−B) + Λ(

W4

2
−C)−Λ(

W2

2
)−Λ(

W3

2
)−Λ(

W4

2
).

(2.2)

Hence we get

V1,Λ(T ) =
1
2

(Λ(A) + Λ(B) + Λ(C)

+ Λ(
W2

2
− A) − Λ(

W2

2
− E) − Λ(

W2

2
− F ) − Λ(

W2

2
)

+ Λ(
W3

2
− B) − Λ(

W3

2
− D) − Λ(

W3

2
− F ) − Λ(

W3

2
)

+ Λ(
W4

2
− C) − Λ(

W4

2
− D) − Λ(

W4

2
− E) − Λ(

W4

2
)
)

. (2.3)

2.2 Tetrahedron with two ideal vertices

Now consider the case that there are two ideal vertices. Assume that
W1 = W2 = 0. This case, we have

V1,Λ(T ) =
1
2

(Λ(B) + Λ(C) + Λ(E) + Λ(F )

+ Λ(
W3

2
− B) − Λ(

W3

2
− D) − Λ(

W3

2
− F ) − Λ(

W3

2
)

+ Λ(
W4

2
− C) − Λ(

W4

2
− D) − Λ(

W4

2
− E) − Λ(

W4

2
)
)

. (2.4)
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2.3 Tetrahedron with three ideal vertices

Consider the case that there are three ideal vertices. Assume that W1 =
W2 = W3 = 0. This case, we have

V1,Λ(T ) =
1
2

(
Λ(C) + Λ(D) + Λ(E)

− Λ(
W4

2
− C) − Λ(

W4

2
− D) − Λ(

W4

2
− E) − Λ(

W4

2
)
)

. (2.5)

This coinsides with the formula (43) in [12].

2.4 Tetrahedron with four ideal vertices

This case, the tetrahedron T is an ideal tetrahedron and W1 = W2 =
W3 = W4 = 0, D = A, E = B, F = C. Therefore

V1,Λ(T ) = Λ(A) + Λ(B) + Λ(C). (2.6)

This coincides with the well known formula of the volume of an ideal
tetrahedron.

Remark. Let T be a tetrahedra with at least one ideal vertex. Then
the last formula (2.6) suggest that V1,Λ(T ) with z1 = 1 is positive and
equal to the volume of T . For the general tetrahedron, let the solution
z1 of (0.3) be a deformation of z1 = 1 of the above case. Then Im V1(T ),
Im V (T ), VΛ(T ) and V1,Λ(T ) are positive and equal to the volume of T .

3 Proofs

3.1 The formula by Cho-Kim

A formula of the volume of a generic hyperbolic tetrahedron is given
by Cho-Kim [1]. Let A, B, C, D, E, F denote the dihedral angles of
T as before, and let (P1, Q1, R1, S1, T1) and (P2, Q2, R2, S2, T2) be
the solutions of the following system of equations with respect to the
variables P , Q, R, S, T .

P + Q = B, R + S = E, Q + R + T = F + π, P + S + T = C + π,
(3.1)
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∣∣∣∣∣∣∣∣∣∣

1 − cos D − cos P cos B cos C
− cos D 1 cos(R + T ) cos F cos E
− cos P cos(R + T ) 1 − cos Q cos(S + T )
cos B cos F − cos Q 1 − cos A
cos C cos E cos(S + T ) − cos A 1

∣∣∣∣∣∣∣∣∣∣
= 0. (3.2)

This system can be reduced to a quadratic equation and there are two
solutions.

Theorem 5. (Cho-Kim [1]) The twice of the volume of T is given as
follows.

2 Vol(T ) = Λ(P1) − Λ(Q1) + Λ(R1) − Λ(S1)

− Λ(
B − C − A + π

2
− Q1) + Λ(

D − B − F + π

2
+ Q1)

+ Λ(
E − C − D + π

2
− R1) − Λ(

A − E − F + π

2
+ R1)

− Λ(P2) + Λ(Q2) − Λ(R2) + Λ(S2)

+ Λ(
B − C − A + π

2
− Q2) − Λ(

D − B − F + π

2
+ Q2)

− Λ(
E − C − D + π

2
− R2) + Λ(

A − E − F + π

2
+ R2). (3.3)

The solutions (P1, · · · ) and (P2, · · · ) of the solutions of (3.1) and (3.2)
are chosen so that the value of (3.3) is positive.

3.2 Discriminant of the quadratic equation

From (3.1), we have

Q = B − P, R = (−B − C + E + F )/2 + P,

S = (B + C + E − F )/2 − P, T = (−B + C − E + F )/2 + π.
(3.4)

Let a = exp
√
−1 A, b = exp

√
−1 B, c = exp

√
−1 C, d = exp

√
−1 D,

e = exp
√
−1 E, f = exp

√
−1 F and p = exp

√
−1 P . Then (3.2) is

reformulated as follows.∣∣∣∣∣∣∣∣∣∣∣

1 −1
2(d + 1

d) −1
2(p + 1

p) 1
2(b + 1

b )
1
2(c + 1

c )
−1

2(d + 1
d) 1 −1

2(f p
b + b

f p) 1
2(f + 1

f ) 1
2(e + 1

e )
−1

2(p + 1
p) −1

2(f p
b + b

f p) 1 −1
2(p

b + b
p) −1

2(p
c + c

p)
1
2(b + 1

b )
1
2(f + 1

f ) −1
2(p

b + b
p) 1 −1

2(a + 1
a)

1
2(c + 1

c )
1
2(e + 1

e ) −1
2(p

c + c
p) −1

2(a + 1
a) 1

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.5)

11



Multiplying p2, this equation becomes a quadratic equation with respect
to p2, and we denote this equation as

g(p2) = 0 (3.6)

with a quadratic polynomial g(x). Let Dg be the discriminant of g(x).
Let

g1(x) =
16 a2 b4 c2 d2 e f2 g(x)

(a b + c) (b + a c) (b d + f) (b + d f)
.

Then g1(x) is also a polynomial. Let Dg be the discriminant of g1(x) =
0. An actual computation shows that

Dg1
= 16 a2 b4 c2 d2 e2 f2 det Gram(T ). (3.7)

Noting (1.10), the quadratic equations (3.6) and(1.5) have similar dis-
criminants.

3.3 Proof of Theorem 1

To prove Theorem 1, we first investigate the derivation of (3.3) with
respect to A. Let

h(x, T ) = Li2(x) + Li2(
x

b2
) − Li2(−

x

a b c
) − Li2(−

x a

b c
)

− Li2(−
x f

b d
) − Li2(−

x d f

b
) + Li2(

x f

b c e
) + Li2(

x e f

b c
). (3.8)

Lemma Let x1, x2 be the non-trivial two solutions of

d h(x, T )
dx

=
2 π

√
−1

x
k, (k ∈ Z). (3.9)

Then,

Vol(T ) =
Im h(x1, T ) − Im h(x2, T )

4
. (3.10)

Here x1 and x2 are chosen so that the value of the above formula is
positive.

Proof. The equation (3.9) is reduced to the following quadratic equation
with respect to x.

1
x

(
(1 − x)(1 − x

b2
)(1 − xf

bce
)(1 − xef

bc
) −

(1 +
x

abc
)(1 +

xa

bc
)(1 +

xf

bd
)(1 +

xdf

b
)
)

= 0. (3.11)
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An actual computation shows that this equation is a multiple of the
equation (3.6) where x corresponds to p2. By using the relation (1.13)
and Λ(−x) = −Λ(x), it is proved that a half of the right hand side of
(3.10) is a half of the right hand side of (3.3). q.e.d.

Proof of Theorem 1. First, we show that the imaginary part of the
derivations of V (T ) = (U(z1, T )−U(z2, T ))/2 and (h(x1, T )−h(x2, T ))/4
with respect to every dihedral angle of T is equal. Since V (T ) is sym-
metric with respect to the six angles A, B, C, D, E, F , it is enough to
show for one parameter, say A.

Since z1, z2 in (0.6) are solutions of (0.3) and |z1| = |z2| = 1,

∂ U(zi, T )
∂A

=
∂ U(zi, T )

∂a

d a

dA

= − 1
2 a

(log(1 − zi a b d e) + log(1 − zi a c d f) −

log(1 + zi a b c) − log(1 + zi a e f))
√
−1 a +

∂ U(z, T )
∂z

∂zi

∂a

d a

dA

= −
√
−1
2

(log(1 − zi a b d e) + log(1 − zi a c d f) − log(1 + zi a b c) −

log(1+ zi a e f)) +
π
√
−1 ki

zi

∂ zi

∂A

(
π
√
−1 ki

zi

=
d U(z, T )

dz

∣∣∣∣
z=zi

)

= −
√
−1
2

log
(1 − zi a b d e) (1 − zi a c d f)

(1 + zi a b c) (1 + zi a e f)
− π ki αi,(

αi =
∂ arg zi

∂A
∈ R

)
(3.12)

for i = 1, 2. Similarly, since x1 and x2 in (3.10) are solutions of (3.9),
we have

∂ h(xi, T )
∂A

=
∂ h(xi, T )

∂a

d a

dA
=

√
−1 log

1 + a xi
b c

1 + xi
a b c

− π k′
i α

′
i,(

2 π
√
−1 k′

i

xi

=
d h(x, T )

dx

∣∣∣∣
x=xi

, α′
i = 2

∂ arg xi

∂A
∈ R

)
(3.13)
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for i = 1, 2. Then, an actual computation shows that

(1 + z1 a b c) (1 + z1 a e f) (1 − z2 a b d e) (1 − z2 a c d f)
(1 − z1 a b d e) (1 − z1 a c d f) (1 + z2 a b c) (1 + z2 a e f)

=

(1 +
a x1

b c
) (1 +

x2

a b c
)

(1 +
x1

a b c
) (1 +

a x2

b c
)
, (3.14)

for a suitable choice of z1, z2 and x1, x2. This identity implies that

∂ V (T )
∂A

=
1
4

∂ (h(x1, T ) − h(x2, T ))
∂A

+ α, (3.15)

for some real number α and so we get

Im
∂ V (T )

∂A
=

∂

∂A
Vol(T ). (3.16)

This implies that the difference Im V (T ) − Vol(T ) is a constant C. On
the other hand, the functions ImV (T ) and Vol(T ) are both 0 if the
determinant of the Gram matrix is 0, and they are continuous with
respect to the parameters A, B, · · · , F corresponding to hyperbolic and
degenerate tetrahedra. Hence the constant C should be 0 and we get
(0.7). q.e.d.

3.4 Proof of Theorem 2

To prove Theorem 2, we show the following identity.

Im (U(z1, T ) + U(z2, T ) + 2 ∆(T )) = 0. (3.17)

To do this, we first show that

Im
∂

∂A
(U(z1, T ) + U(z2, T ) + 2 ∆(T )) = 0. (3.18)

To show (3.18), we prove that

Im exp 2 a
∂

∂A
(U(z1, T ) + U(z2, T ) + 2 ∆(T )) = 1. (3.19)

Since z1 and z2 are solutions of (1.5) and so they satisfy

(1 − z1 x)(1 − z2 x) = x2 h(x−1)/γ, (3.20)
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for any x where h(z) is the quadratic polynomial introduced in (1.4) and
α is the coefficient of the degree two term of h(z). From this relation,
we have

(1 − z1 a b d e)(1 − z2 a b d e) =

(a b d e)3 (1 + c d−1 e−1) (1 + b−1 d−1 f) (1 + a−1 e−1 f) (1 + a−1 b−1 c)
γ

,

(1 − z1 a c d f)(1 − z2 a c d f) =

(a c d f)3 (1 + b d−1 f−1) (1 + c−1 d−1 e) (1 + a−1 b c−1) (1 + a−1 e f−1)
γ

,

(1 + z1 a b c)(1 + z2 a b c) =

(a b c)3 (1 + a−1 b−1 c−1)(1 + c−1 d e)(1 + b−1 d f)(1 + a−1 e f)
γ

,

(1 + z1 a e f)(1 + z2 a e f) =

(a e f)3 (1 + a−1 e−1 f−1) (1 + b d f−1) (1 + c d e−1) (1 + a−1 b c)
γ

.

(3.21)

Using the above and (3.12), we get

∂

∂A
(U(z1, T ) + U(z2, T ) + 2 ∆(T ))

=
√
−1
2

log
(

(1 + z1 a b c) (1 + z1 a e f) (1 + z2 a b c) (1 + z2 a e f)
(1 − z1abde) (1 − z1acdf) (1 − z2abde) (1 − z2acdf)

×

(1 + a b c−1)(1 + a b−1 c)
(1 + a−1bc)(1 + a−1b−1c−1)

× (1 + a e f−1)(1 + a e−1 f)
(1 + a−1ef)(1 + a−1e−1f−1)

× d2

a4

)
− π k1 α1 − π k2 α2

=
√
−1
2

log
(

(1 + a−1 b−1 c−1) (1 + c−1 d e) (1 + b−1 d f) (1 + a−1 e f)
(1 + cd−1e−1)(1 + b−1d−1f)(1 + a−1e−1f)(1 + a−1b−1c)

×

(1 + a−1 e−1 f−1) (1 + b d f−1) (1 + c d e−1) (1 + a−1 b c)
(1 + b d−1 f−1) (1 + c−1 d−1 e) (1 + a−1 b c−1) (1 + a−1 e f−1)

×

(1 + a b c−1) (1 + a b−1 c)
(1 + a−1 b c)(1 + a−1 b−1 c−1)

× (1 + a e f−1)(1 + a e−1 f)
(1 + a−1ef)(1 + a−1e−1f−1)

× d2

a4

)
− π k1 α1 − π k2 α2

=
√
−1
2

log
(

1
a4 d4

(c−1 d e) (b−1 d f) (b d f−1) (c d e−1)×

(a b c−1) (a b−1 c) (a e f−1) (a e−1 f)
)
− π k1 α1 − π k2 α2
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= −π k1 α1 − π k2 α2. (3.22)

Hence

Im
∂

∂A
(U(z1, T ) + U(z2, T ) + 2 ∆(T )) = 0.

The derivation with respect to the other parameters B, C, D, E, F
also vanish and so we get

Im (U(z1, T ) + U(z2, T ) + 2 ∆(T )) = C′. (3.23)

The function Im (U(z1, T ) + U(z2, T ) + 2 ∆(T )) is continuous for hyper-
bolic tetrahedra including ideal tetrahedra, and the constant C′ is 0 for
ideal tetrahedra by (2.6), we get (0.8). q.e.d.

3.5 Proof of Theorem 3

Let Tt, t ∈ [0, 1] be tetrahedra whose dihedral angles continuously de-
pend on the parameter t. Assume that, if t > 0 then Tt is a hyperbolic
tetrahedron, and T0 is a Euclidean tetrahedron, i.e. rank Gram(T0) = 3
and Gram(T0) is positive semidefinite. Let W be a neighborhood of 0
in [0, 1]. Let z1(t) and z2 be the equation

dU(z, Tt0
)

dz
=

π
√
−1

z
k, (k ∈ Z)

and let k1 and k2 satisfy

dU

dz

∣∣∣∣
z=zi

=
π
√
−1

zi

ki.

We assume that W is small enough so that ki is constant for all t ∈ W .
Now let Ṽ (T ) be the branch of V (T ) which is the analytic continu-

ation of

Ṽ (Tt) ={
U(z1(t), Tt) − πk1

√
−1 log z1(t)

}
−

{
U(z2(t), Tt) − πk2

√
−1 log z2(t)

}
2

.

(3.24)

Note that Im V (T ) = Im Ṽ (T ) since |zi| = 1.
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For t ∈ W , (3.12) implies that

∂Ṽ (Tt)
∂A

=

−
√
−1
4

log
(1 − z1 a b d e) (1 − z1 a c d f) (1 + z2 a b c) (1 + z2 a e f)
(1 + z1 a b c) (1 + z1 a e f) (1 − z2 a b d e) (1 − z2 a c d f)

,

(3.25)

where αi =
∂ arg zi

∂A
∈ R for i = 1, 2. Since arg(1 − z) =

arg z − π

2
and

arg(1 + z) =
arg z

2
,

arg
(1 − z1 a b d e) (1 − z1 a c d f) (1 + z2 a b c) (1 + z2 a e f)
(1 + z1 a b c) (1 + z1 a e f) (1 − z2 a b d e) (1 − z2 a c d f)

= 0,

and so

Re
∂Ṽ (Tt)

∂A
= 0.

Hence Re
∂Ṽ (T )

∂A
= 0 for any hyperbolic tetrahedron. q.e.d.

3.6 Proof of Theorem 4

Theorem 4 comes from the following result in [12].

Theorem 6. (Vinberg [12]) There is an analytic function φ defined
on some open set of C6 corresponding to the six dihedral angles of a
tetrahedron such that

φ(T ) =




Vol(T ) (T is a hyperbolic tetrahedron),
0 (T is an Euclidean tetrahedron),√
−1 Vol(T ) (T is a tetrahedron in S3).

4 Relation to the quantum 6j-symbol

In this section, we explain how we derive our volume formula from the
quantum 6j-symbol.
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4.1 Quantum 6j-symbol

Let N be a integer with N ≥ 3. Let I = {0, 1/2, 1, 3/2, 2, · · · , (N−3)/2,
(N − 2)/2}. Let i, j, k, l, m, n be six elements of I corresponding to
the edges of a tetrahedron as in Figure 1. For these parameters, the

quantum 6j-symbol
{

i j k
� m n

}
is given as follows.

Let q = exp 2π
√
−1/N . For a non-negative integer n, let

[n] =
qn/2 − q−n/2

q1/2 − q−1/2
,

and
[n]! = [n][n − 1][n − 2] · · · [2][1].

Three elements (a, b, c) of I is called admissible triple if |a−b| ≤ c ≤ a+b
and a + b + c is a integer less than N − 1. For i, j, k, l, m, n such that
(i, j, k), (i, m, n), (j, l, n), and (k, l, m) are all admissible triples, let

{
i j k
� m n

}
= ∆(i, j, k)∆(i, m, n)∆(j, l, n)∆(k, l, m) ×∑

s

(−1)s [s + 1]! ×

{[s − i − j − k]![s − i − m − n]![s − j − l − m]![s − k − l − m]! ×
[i + j + l + m − s]![i + k + l + n − s]![j + k + m + n − s]!}−1 . (4.1)

Here the sum
∑

s

runs over all integers s satisfying

s ≤ min{i + j + l + m, i + k + l + n, j + k + m + n},
s ≥ max{i + j + k, i + m + n, J + l + m, k + l + m},

and

∆(i, j, k) =
(

[i + j − k]![i − j + k]![−i + j + k]!
[i + j + k + 1]!

) 1
2

.

The quantum 6j-symbol defined the above is a symmetrized version
with respect to the symmetry of the tetrahedron.
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4.2 Large N limit

Let xN be a sequence of integers such that
2 π

N
xN ∼ x

2
(N → ∞).

Then, by (1.12) and (1.13), we have

[xn]! ∼ exp
(
−N

π
Λ

(x

2

))
= exp(−N

2π
Im Li2(exp

√
−1 x))

= exp(
N

2π
Im Li2(exp−

√
−1 x)). (4.2)

Let iN , jN , kN , lN , mN and nN be sequences of half integers such that{
iN jN kN

lN mN nN

}
is defined and

iN
N

∼ xi,
jN

N
∼ xj ,

kN

N
∼ xk,

lN
N

∼ xl,
mN

N
∼ xm,

nN

N
∼ xn. Let a = exp

√
−1 (xi − π), b = exp

√
−1 (xj − π),

c = exp
√
−1 (xk − π), d = exp

√
−1 (xl − π), e = exp

√
−1 (xm − π),

and f = exp
√
−1 (xn − π), we have

π

N
log

∣∣∣∣
{

iN jN kN

lN mN nN

}∣∣∣∣∼
1
2

Im {(L(a, b, c) + L(a, e, f) + L(b, d, f) + L(c, d, e)) +∫
z
(Li2(z) + Li2(zabde) + Li2(zacdf) + Li2(zbdef) −

Li2(−zabc) − Li2(−zaef) − Li2(−zbdf) − Li2(−zcde)) dz} , (4.3)

where

L(a, b, c) =
1
2

Li2(−
ab

c
) + Li2(−

bc

a
) + Li2(−

ca

b
) − Li2(−abc).

The integral path of z correspond to the range of s in (4.1)

4.3 Saddle points

From (4.3), we tried to find out the relation of the saddle point of the
function

Li2(z) + Li2(zabde) + Li2(zacdf) + Li2(zbdef) −
Li2(−zabc) − Li2(−zaef) − Li2(−zbdf) − Li2(−zcde), (4.4)

with respect to the parameter z. The saddle point means the point
that the derivation with respect z vanish. We put this formula (4.4), as
U(z, T ) in (0.1), and, after various numerical experimentations, we get
our formula.
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5 Discussion

5.1 Orientation and mirror image

Let T be a tetrahedron and let T ′ be its mirror image. Then we have

V (T ) = V (T ′).

The function V is defined as a complex function, but it is pure imaginary
for a hyperbolic tetrahedron and real for a spherical tetrahedron. On
the other hand, we defined another functions V1 and V2 for the volume.
Let Ṽ1 and Ṽ2 be the branch of V1 and V2 obtained similarly as Ṽ . Now
assume that V1 corresponds to the solution z1 which is equal to 1 when
T has an ideal vertex. Then

Ṽ1(T ) − Ṽ2(T ) = 2 Ṽ (T ) = 2 Vol(T ). (5.1)

If T is hyperbolic, then Re Ṽ (T ) = 0 by Theorem 3 and so

Re Ṽ1(T ) = Re Ṽ2(T ). (5.2)

Hence, if we assign Ṽ1(T ) as the complexification of the volume of T ,
it may be natural to assign −Ṽ2(T ′) for the mirror image T ′ instead of
Ṽ1(T ) since Re(−Ṽ2(T ′)) = −Re Ṽ1(T ).

There are four candidates for the complexification of the volume
function of a tetrahedron T ; Ṽ1(T ), −Ṽ1(T ), Ṽ2(T ), −Ṽ2(T ). If the
volume of T is assumed to be positive, there are two candidates; Ṽ1(T )
and −Ṽ2(T ). The natural way of this choice may be determined by the
sign of the vertex orientation of T . Here, vertex orientation means the
order of four vertices of T .

We would like to give one more remark. The real part Re Ṽ1(T ) may
correspond to the scissors congruence invariant of hyperbolic polyhedra
other than the volume. To define Ṽ1 and Ṽ2, we fix their branches.
They are chosen so that their imaginary parts correspond to the volume.
However, there is still some ambiguity for the choice of branch and we
can fix the real part only up to modulo π2.

5.2 Actual asymptotics of the quantum 6j-symbols

Our formula is obtained by considering the asymptotics of the quantum
6j-symbol. Unfortunately, the integral path corresponding to the sum
does not pass the saddle point of the function (4.4). Actually, it is known
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that the quantum 6j-symbol is of polynomial growth with respect to N
and we cannot apply the saddle point method. However, our result gives
a hidden relation between the quantum 6j-symbol and the volume of a
tetrahedron.

5.3 Regge’s symmetry

The quantum 6j-symbol is invariant under Regge’s symmetry. This
implies the following. Let T be a tetrahedron whose dihedral angles are
A, B, C, D, E, F as before. Choose a pair of dihedral angles of opposite
sides, say A, D. Let L = (B +C +E +F )/2. Let T ′ be the tetrahedron
whose dihedral angles are A, L−B, L−C, D, L−E, L−F . Since this
operation induces a permutation of the terms of U(z, T ) and ∆(T ), we
have

V1(T ) = V1(T ′), V2(T ) = V2(T ′), V (T ) = V (T ′). (5.3)

Hence, if these functions actually equal to the volume, we have

Vol(T ) = Vol(T ′). (5.4)

5.4 Higher dimensional case

The area of a hyperbolic triangle is determined by the sum of the three
angles. The angle is given as a argument of a complex number, i.e. the
imaginary part of its logarithm. The volume of a hyperbolic tetrahedron
is given by dilogarithm functions of some complex values relating its
dihedral angles. So it may be natural to seek a formula of the volume
of a higher-dimensional simplex given by polylogarithm functions of
certain numbers related to the simplex. In [3] and in the papers cited
in it, such formulas are actually given for some special cases.
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