% Corresction to : Representation of mapping class groups via the universal perturbative invariant % This is AMS-LaTeX (LaTeX2e compatible) % preanbles % This is AMS-LaTeX % settings \documentstyle[12pt]{amsart} %\documentstyle{amsart} \numberwithin{equation}{section} \textwidth16cm \textheight23cm \topmargin-0.3cm \oddsidemargin-0.2cm \evensidemargin-0.2cm \theoremstyle{plain} \newtheorem{thm}{Theorem}[section] %\renewcommand{\thethm}{} \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{cor}[thm]{Corollary} %\renewcommand{\thecor}{} \theoremstyle{definition} \newtheorem{rem}{Remark}[section] \renewcommand{\therem}{} % new macros \newcommand{\del}{\partial} % connect sum at \newcommand{\csumat}[1] {{\displaystyle\operatornamewithlimits{\#}_{#1}}} % \cal A \newcommand{\cA}{{\cal A}} \newcommand{\cAphi}{{\cal A}(\phi)} \newcommand{\cAGamma}{{\cal A}(\Gamma)} \newcommand{\cAGammag}{{\cal A}(\Gamma_g)} % \cal M \newcommand{\cM}{{\cal M}} \newcommand{\cMg}{{\cal M}_g} % \toval \newcommand{\toval}{\thicklines\oval} % \tline \newcommand{\tline}{\thicklines\line} % new figures \newcommand{\figH}{% figure H \begin{picture}(10, 12) \put(5, 5){\oval(10, 3)[b]} \put(4.5, 5){\oval(9, 3)[tl]} \put(5.5, 5){\oval(9, 3)[tr]} \put(5, 0){\tline(0, 1){3}} \put(5, 3){\vector(0, -1){2}} \put(5, 4){\tline(0, 1){7}} \put(-3, 7){$-1$} \end{picture}} \newcommand{\Gammag}{{ \setlength{\unitlength}{1mm} \raisebox{-2mm}{ \begin{picture}(30, 5) \multiput(3.5, 5)(8, 0){2}{\vector(-1, 0){2}} \put(27.5, 5){\vector(-1, 0){2}} \put(5.5, 2.5){\vector(1, 0){2}} \put(2.5, 2.5){\toval(5,5)} \put(5, 2.5){\tline(1,0){3}} \put(10.5, 2.5){\toval(5, 5)} \put(13, 2.5){\tline(1, 0){2}} \multiput(16, 2.5)(2, 0){3}{\tline(1, 0){1}} \put(22, 2.5){\tline(1, 0){2}} \put(26.5, 2.5){\toval(5, 5)} \end{picture} }}} % figures for $x_i^{}$ \newcommand{\xdouble}{{ \begin{picture}(14, 4) \put(7, 4){\toval(14, 8)[b]} \put(7, 4){\oval(10, 4)[b]} \end{picture}}} \newcommand{\xdelta}{ \begin{picture}(14, 6) \put(4, 0){\toval(8, 8)[tl]} \put(4, 0){\oval(4, 4)[tl]} \put(10, 0){\toval(8, 8)[tr]} \put(10, 0){\oval(4, 4)[tr]} \put(4, 0.5){\framebox(6, 5){$\Delta$}} \multiput(4.5, 5.5)(0, 2){3}{\line(0, 1){1}} \multiput(5.5, 5.5)(0, 2){3}{\line(0, 1){1}} \multiput(9.5, 5.5)(0, 2){3}{\line(0, 1){1}} \put(6, 7){...} \end{picture}} \newcommand{\xleft}{ \begin{picture}(13, 10) \put(12, 15.2){\framebox(3, 4.8){$\nu$}} \put(11, 15){\tline(0, 1){5}} \put(-1, 10){\framebox(15, 5){$S_1\Phi$}} \put(-1, 0){\framebox(15, 5){$S_1\Phi^{-1}$}} \put(2, 5){\tline(0, 1){5}} \put(2, 5){\vector(0, 1){2}} \put(11, 5){\tline(0, 1){5}} \put(13, 5){\line(0, 1){5}} \put(13, 7){\vector(0, -1){2}} \put(11, 7){\vector(0, -1){2}} \put(2, 8){\tline(1, 0){9}} \put(7, 8){\vector(1, 0){2}} \put(-2, 0){\toval(8, 8)[br]} \put(-2, 15){\toval(8, 18)[tr]} \end{picture}} \newcommand{\xright}{ \begin{picture}(15, 10) \put(0, 10){\framebox(15, 5){$S_1S_2\Phi^{-1}$}} \put(-5.2, 15.1){\framebox(8.7, 4.5){$e^{-\zeta/2}$}} \put(4, 15){\tline(0, 1){5}} \put(4, 16){\vector(0, 1){2}} \put(0, 0){\framebox(15, 5){$S_1S_2\Phi$}} \put(4, 5){\tline(0, 1){5}} \put(4, 5){\vector(0, 1){2}} \put(2, 5){\line(0, 1){5}} \put(2, 5){\vector(0, 1){2}} \put(13, 5){\tline(0, 1){5}} \put(13, 7){\vector(0, -1){2}} \put(4, 8){\tline(1, 0){9}} \put(7, 8){\vector(1, 0){2}} \put(17, 0){\toval(8, 8)[bl]} \put(17, 15){\toval(8, 18)[tl]} \end{picture}} % figures for chord diagrams \newcommand{\thetaone}{ \setlength{\unitlength}{1mm} \raisebox{-1mm}{ \begin{picture}(6, 5) \multiput(0, 0)(0, 2){3}{\line(0, 1){1}} \multiput(5, 0)(0, 2){3}{\line(0, 1){1}} \multiput(0, 0)(2, 0){3}{\line(1, 0){1}} \multiput(0, 2.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 5)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\Thetazero}{ \setlength{\unitlength}{1mm} \raisebox{-1mm}{ \begin{picture}(6, 5) \put(2.5, 2.5){\toval(5, 5)} \end{picture} } } \newcommand{\Thetaone}{ \setlength{\unitlength}{1mm} \raisebox{-1mm}{ \begin{picture}(6, 5) \put(2.5, 2.5){\toval(5, 5)} \multiput(0, 2.5)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdtheta}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 2.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 7.5)(2, 0){3}{\line(1, 0){1}} \multiput(5, 2.5)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\trivial}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(1, 10) \put(0, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdthetatwo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(10, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 2.5)(2, 0){5}{\line(1, 0){1}} \multiput(0, 7.5)(2, 0){5}{\line(1, 0){1}} \multiput(4.5, 2.5)(0, 2){3}{\line(0, 1){1}} \multiput(9, 2.5)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetasquare}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 1)(2, 0){3}{\line(1, 0){1}} \multiput(0, 4)(2, 0){3}{\line(1, 0){1}} \multiput(0, 6)(2, 0){3}{\line(1, 0){1}} \multiput(0, 9)(2, 0){3}{\line(1, 0){1}} \multiput(5, 1)(0, 2){2}{\line(0, 1){1}} \multiput(5, 6)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetabridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(8, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 3.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 8.5)(2, 0){3}{\line(1, 0){1}} \multiput(5, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(0, 2)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdthetabridgehalf}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(6, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 3.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 8.5)(2, 0){3}{\line(1, 0){1}} \multiput(5, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(0, 2)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdbridgetheta}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(2, 3.5)(2, 0){3}{\line(1, 0){1}} \multiput(2, 8.5)(2, 0){3}{\line(1, 0){1}} \multiput(2, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(0, 2)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridgetwo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 7)(2, 0){4}{\line(1, 0){1}} \multiput(0, 3)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridgethree}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 8)(2, 0){4}{\line(1, 0){1}} \multiput(0, 5)(2, 0){4}{\line(1, 0){1}} \multiput(0, 2)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 5)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridgehalf}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 5)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdbranch}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(11, 10) \multiput(0, 0)(4.5, 0){3}{\tline(0,1){10}} \multiput(0, 4)(2, 0){5}{\line(1, 0){1}} \multiput(2.5, 4)(0, 1.5){2}{\line(0,1){1}} \put(3.5, 6.5){\line(1, 0){1}} \end{picture} } } \newcommand{\cdbranchbridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(11, 10) \multiput(0, 0)(4.5, 0){3}{\tline(0,1){10}} \multiput(0, 3)(2, 0){5}{\line(1, 0){1}} \multiput(2.5, 3)(0, 1.5){2}{\line(0,1){1}} \put(3.5, 5.5){\line(1, 0){1}} \multiput(0, 7.5)(1.7, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\gammatwobase}{ \multiput(4.5, 4.5)(14, 0){2}{\toval(9, 9)} \put(9, 4.5){\tline(1, 0){5}} } \newcommand{\gammatwo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \end{picture} } } \newcommand{\gammatwofirst}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(4.5, 0)(0, 2){5}{\line(0, 1){1}} \end{picture} } } \newcommand{\gammatwosecond}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(18.5, 0)(0, 2){5}{\line(0, 1){1}} \end{picture} } } \newcommand{\gammatwoboth}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(4.5, 0)(0, 2){5}{\line(0, 1){1}} \multiput(18.5, 0)(0, 2){5}{\line(0, 1){1}} \end{picture} } } \newcommand{\gammatwobridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(9, 6)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdbridgethetatheta}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(6, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 1.5)(2, 0){2}{\line(1,0){1}} \multiput(0, 4.5)(2, 0){2}{\line(1,0){1}} \multiput(0, 6)(2, 0){2}{\line(1,0){1}} \multiput(0, 9)(2, 0){2}{\line(1,0){1}} \multiput(0, 10.5)(2, 0){3}{\line(1, 0){1}} \multiput(3, 1.5)(0, 2){2}{\line(0, 1){1}} \multiput(3, 6)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdbridgethetatwo}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(6, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 2)(2, 0){3}{\line(1,0){1}} \multiput(0, 7)(2, 0){3}{\line(1,0){1}} \multiput(0, 10)(2, 0){3}{\line(1, 0){1}} \multiput(2.5, 2)(0, 2){3}{\line(0, 1){1}} \multiput(5, 2)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdbridgeotheta}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(10, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 2)(2, 0){2}{\line(1,0){1}} \multiput(0, 5)(2, 0){2}{\line(1,0){1}} \multiput(3, 2)(0, 2){2}{\line(0, 1){1}} \multiput(0, 9)(2, 0){2}{\line(1, 0){1}} \multiput(6, 9)(2, 0){2}{\line(1, 0){1}} \multiput(3, 6.5)(0, 2){3}{\line(0, 1){1}} \multiput(6, 6.5)(0, 2){3}{\line(0, 1){1}} \multiput(3, 6.5)(2, 0){2}{\line(1,0){1}} \multiput(3, 11.5)(2, 0){2}{\line(1,0){1}} \end{picture} } } \newcommand{\cdbridgeotwo}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(16, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 6)(2, 0){2}{\line(1, 0){1}} \multiput(6, 6)(2, 0){2}{\line(1, 0){1}} \multiput(12, 6)(2, 0){2}{\line(1, 0){1}} \multiput(3, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(6, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(3, 3.5)(2, 0){2}{\line(1,0){1}} \multiput(3, 8.5)(2, 0){2}{\line(1,0){1}} \multiput(9, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(12, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(9, 3.5)(2, 0){2}{\line(1,0){1}} \multiput(9, 8.5)(2, 0){2}{\line(1,0){1}} \end{picture} } } \newcommand{\cdthetathree}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(4, 13) \put(0,0){\tline(0, 1){13}} \multiput(0, 1)(2, 0){2}{\line(1, 0){1}} \multiput(0, 4)(2, 0){2}{\line(1, 0){1}} \multiput(3, 1)(0, 2){2}{\line(0, 1){1}} \multiput(0, 5)(2, 0){2}{\line(1, 0){1}} \multiput(0, 8)(2, 0){2}{\line(1, 0){1}} \multiput(3, 5)(0, 2){2}{\line(0, 1){1}} \multiput(0, 9)(2, 0){2}{\line(1, 0){1}} \multiput(0, 12)(2, 0){2}{\line(1, 0){1}} \multiput(3, 9)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetaoo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 11) \put(0,0){\tline(0, 1){11}} \multiput(0, 2)(2, 0){3}{\line(1, 0){1}} \multiput(0, 9)(2, 0){3}{\line(1, 0){1}} \multiput(2.5, 2)(0, 2){4}{\line(0, 1){1}} \multiput(5, 2)(0, 1.5){2}{\line(0, 1){1}} \multiput(5, 6.5)(0, 1.5){2}{\line(0, 1){1}} \multiput(2.5, 4.5)(1.5, 0){2}{\line(1, 0){1}} \multiput(2.5, 6.5)(1.5, 0){2}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdthetadouble}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(4, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 2)(2, 0){2}{\line(1, 0){1}} \multiput(0, 5)(2, 0){2}{\line(1, 0){1}} \multiput(3, 2)(0, 2){2}{\line(0, 1){1}} \multiput(0, 7)(2, 0){2}{\line(1, 0){1}} \multiput(0, 10)(2, 0){2}{\line(1, 0){1}} \multiput(3, 7)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetafour}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(4, 17) \put(0,0){\tline(0, 1){17}} \multiput(0, 1)(2, 0){2}{\line(1, 0){1}} \multiput(0, 4)(2, 0){2}{\line(1, 0){1}} \multiput(3, 1)(0, 2){2}{\line(0, 1){1}} \multiput(0, 5)(2, 0){2}{\line(1, 0){1}} \multiput(0, 8)(2, 0){2}{\line(1, 0){1}} \multiput(3, 5)(0, 2){2}{\line(0, 1){1}} \multiput(0, 9)(2, 0){2}{\line(1, 0){1}} \multiput(0, 12)(2, 0){2}{\line(1, 0){1}} \multiput(3, 9)(0, 2){2}{\line(0, 1){1}} \multiput(0, 13)(2, 0){2}{\line(1, 0){1}} \multiput(0, 16)(2, 0){2}{\line(1, 0){1}} \multiput(3, 13)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\Bone}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \end{picture} } } \newcommand{\Btwo}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \multiput(0, 5.5)(2, 0){6}{\line(1, 0){1}} \end{picture} } } \newcommand{\Bthree}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \multiput(0, 5.5)(2, 0){2}{\line(1, 0){1}} \multiput(8, 5.5)(2, 0){2}{\line(1, 0){1}} \multiput(3, 8)(2, 0){3}{\line(1, 0){1}} \multiput(3, 3)(2, 0){3}{\line(1, 0){1}} \multiput(3, 3)(0, 2){3}{\line(0, 1){1}} \multiput(8, 3)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\Bfour}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \multiput(0, 4.5)(2, 0){6}{\line(1, 0){1}} \multiput(0, 6.5)(2, 0){6}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdthetao}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(6, 10) \put(0,0){\tline(0, 1){10}} \multiput(0, 2)(2, 0){3}{\line(1,0){1}} \multiput(0, 7)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 2)(0, 2){3}{\line(0, 1){1}} \multiput(5, 2)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetas}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(6, 10) \put(0,0){\tline(0, 1){10}} \multiput(0, 1.5)(2, 0){3}{\line(1,0){1}} \multiput(0, 4)(1.5, 0){2}{\line(1,0){1}} \multiput(0, 6)(1.5, 0){2}{\line(1,0){1}} \multiput(0, 8.5)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 1.5)(0, 2){4}{\line(0, 1){1}} \multiput(5, 1.5)(0, 2){4}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetaosquare}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(6, 12) \put(0,0){\tline(0, 1){10}} \multiput(0, 2)(2, 0){3}{\line(1,0){1}} \multiput(0, 5)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 2)(0, 2){2}{\line(0, 1){1}} \multiput(5, 2)(0, 2){2}{\line(0, 1){1}} \multiput(0, 7)(2, 0){3}{\line(1,0){1}} \multiput(0, 10)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 7)(0, 2){2}{\line(0, 1){1}} \multiput(5, 7)(0, 2){2}{\line(0, 1){1}} \end{picture} } } % Topmatter \begin{document} \baselineskip20pt % Title \begin{center} %\begin{large} \begin{bf} {CORRECTION TO: \\ REPRESENTATION OF MAPPING CLASS GROUPS VIA \\ THE UNIVERSAL PERTURBATIVE INVARIANT} \end{bf} \\ {Jun Murakami} %\end{large} \\ Department of Mathematics, Osaka University\\ Toyonaka, Osaka 560, Japan \\ {\it e-mail address\/}: jun@@math.sci.osaka-u.ac.jp \end{center} \subsection*{p. 578, Figure 10} \begin{center} \setlength{\unitlength}{1mm} $\begin{matrix} \begin{picture}(53, 35)(-18, 0) \put(0, 24){\xdelta} \put(10, 4){\xright} \put(0, 0){\xdouble} \put(1.2, 4){\tline(0, 1){20}} \put(3.2, 9){\line(0, 1){15}} \put(2, 4){\framebox(3, 4.8){$\nu$}} \put(-3, 2){$\varepsilon_1^{}$} \put(29, 0){$\varepsilon_4^{}$} \put(27, 24){$\varepsilon_3^{}$} \end{picture} \\ x_1^{} \end{matrix} \quad \begin{matrix} \begin{picture}(54, 35)(-15, 0) \put(0, 24){\xdelta} \put(10, 4){\xright} \put(-11, 4){\xleft} \put(0, 0){\xdouble} \put(-18, 23){$\varepsilon_{3i-6}^{}$} \put(-18, 2){$\varepsilon_{3i-5}^{}$} \put(-6, 0){$\varepsilon_{3i-3}^{}$} \put(26, 23){$\varepsilon_{3i+1}^{}$} \put(26, 2){$\varepsilon_{3i}^{}$} \end{picture} \\ x_i^{} \end{matrix} \quad \begin{matrix} \begin{picture}(38, 35)(-15, 0) \put(0, 24){\xdelta} \put(-11, 4){\xleft} \put(0, 0){\xdouble} \put(13.2, 4){\line(0, 1){5}} \put(6, 9.1){\framebox(8.7, 4.5){$e^{-\zeta/2}$}} \put(15.2, 4){\tline(0, 1){20}} \put(13.2, 13.8){\line(0, 1){10.4}} \put(-18, 23){$\varepsilon_{3g-6}^{}$} \put(-18, 2){$\varepsilon_{3g-5}^{}$} \put(16, 18){$\varepsilon_{3g-3}^{}$} \end{picture} \\ x_g^{} \end{matrix}$ \end{center} \subsection*{p. 582, ll. 4-8} \begin{align*} \Delta(\exp(\dfrac{\zeta}{2})) \, &C_1 = C_1 + \left( \dfrac{1}{2} - \dfrac{\theta}{96} \right) \, C_2 + \left( \dfrac{1}{2} - \dfrac{\theta}{96} \right) \, C_3 + \left( -1 + \dfrac{\theta}{48} \right) \, C_5, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_2 = \left( 1 - \dfrac{\theta}{24} \right) \, C_2 + \left(\dfrac{1}{2} -\dfrac{\theta}{96} \right) \, C_4 + \dfrac{\theta}{12}\, C_5, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_3 = \left( 1 - \dfrac{\theta}{24} \right) \, C_3 + \left(\dfrac{1}{2} -\dfrac{\theta}{96} \right) \, C_4 + \dfrac{\theta}{12} C_5, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_4 = \left( 1 - \dfrac{\theta}{12} \right) \, C_4, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_5 = \left( -\dfrac{1}{2}-\dfrac{\theta}{96}\, \right) \, C_4 + \left( 1 + \dfrac{\theta}{24} \right) \, C_5. \end{align*} \subsection*{p. 582, formula (4.7)} \[ (4.7) \qquad \widetilde\rho_2^{(1)}(\alpha_2^{}) = -\sqrt{-1} \, (1 + \displaystyle\frac{\theta}{16}) \, \left( \begin{matrix} 1 & 0 & 0 & 0 & 0 \\\\ \dfrac{1}{2} - \dfrac{\theta}{96}& 1 - \dfrac{\theta}{24}& 0 & 0 & 0 \\\\ \dfrac{1}{2} - \dfrac{\theta}{96} & 0 & 1 - \dfrac{\theta}{24}\, & 0 & 0 \\\\ 0 & \dfrac{1}{2} - \dfrac{\theta}{96} & \dfrac{1}{2} - \dfrac{\theta}{96} & 1 - \dfrac{\theta}{12} & \dfrac{1}{2} - \dfrac{\theta}{96} \\\\ -1 + \dfrac{\theta}{48} & \dfrac{\theta}{12} & \dfrac{\theta}{12} & 0 & 1 + \dfrac{\theta}{24} \end{matrix} \right). \] \subsection*{p. 583, l. 5} \begin{align*} \iota^{(1)}\, \nu \, \exp(-\dfrac{\zeta}{2}) \, &\Phi\, \Delta_{\varepsilon_1^{}} \, C_2 = \left( -2 - \dfrac{\theta}{12} \right) \, C_1 + \left( 1 + \dfrac{\theta}{24} \right) \, C_2 - \dfrac{\theta}{24} \, C_5, \end{align*} \subsection*{p. 583, formula (4.8)} \[ (4.8) \qquad \widetilde\rho_2^{(1)}(\beta_1^{}) = -\sqrt{-1} \, \left( \begin{matrix} 1 + \dfrac{\theta}{24} & -2 - \dfrac{\theta}{12} & 0 & 0 & 0 \\\\ 0 & 1 + \dfrac{\theta}{24} & 0 & 0 & 0 \\\\ 0 & 0 & 1 + \dfrac{\theta}{24} & -2 - \dfrac{\theta}{12} & 0 \\\\ 0 & 0 & 0 & 1 + \dfrac{\theta}{24} & 0 \\\\ 0 & - \dfrac{\theta}{24} & 0 & 0 & 1 + \dfrac{\theta}{48} \end{matrix} \right). \] \subsection*{p. 584, formula (4.9)} \[ (4.9) \qquad \widetilde\rho_2^{(1)}(\beta_2^{}) = -\sqrt{-1} \, \left( \begin{matrix} 1 + \dfrac{\theta}{24} & 0 & -2 - \dfrac{\theta}{12} & 0 & 0 \\\\ 0 & 1 + \dfrac{\theta}{24} & 0 & -2 - \dfrac{\theta}{12} & 0 \\\\ 0 & 0 & 1 + \dfrac{\theta}{24} & 0 & 0 \\\\ 0 & 0 & 0 & 1 + \dfrac{\theta}{24} & 0 \\\\ 0 & 0 & - \dfrac{\theta}{24} & 0 & 1 + \dfrac{\theta}{48} \end{matrix} \right). \] \end{document}