% Representation of mapping class groups via the universal perturbative invariant % preanbles % This is AMS-LaTeX % settings \documentstyle[12pt]{amsart} %\documentstyle{amsart} \numberwithin{equation}{section} \textwidth16cm \textheight23cm \topmargin-0.3cm \oddsidemargin-0.2cm \evensidemargin-0.2cm \theoremstyle{plain} \newtheorem{thm}{Theorem}[section] %\renewcommand{\thethm}{} \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{cor}[thm]{Corollary} %\renewcommand{\thecor}{} \theoremstyle{definition} \newtheorem{rem}{Remark}[section] \renewcommand{\therem}{} % new macros \newcommand{\del}{\partial} % connect sum at \newcommand{\csumat}[1] {{\displaystyle\operatornamewithlimits{\#}_{#1}}} % \cal A \newcommand{\cA}{{\cal A}} \newcommand{\cAphi}{{\cal A}(\phi)} \newcommand{\cAGamma}{{\cal A}(\Gamma)} \newcommand{\cAGammag}{{\cal A}(\Gamma_g)} % \cal M \newcommand{\cM}{{\cal M}} \newcommand{\cMg}{{\cal M}_g} % \toval \newcommand{\toval}{\thicklines\oval} % \tline \newcommand{\tline}{\thicklines\line} % new figures \newcommand{\figH}{% figure H \begin{picture}(10, 12) \put(5, 5){\oval(10, 3)[b]} \put(4.5, 5){\oval(9, 3)[tl]} \put(5.5, 5){\oval(9, 3)[tr]} \put(5, 0){\tline(0, 1){3}} \put(5, 3){\vector(0, -1){2}} \put(5, 4){\tline(0, 1){7}} \put(-3, 7){$-1$} \end{picture}} \newcommand{\Gammag}{{ \setlength{\unitlength}{1mm} \raisebox{-2mm}{ \begin{picture}(30, 5) \multiput(3.5, 5)(8, 0){2}{\vector(-1, 0){2}} \put(27.5, 5){\vector(-1, 0){2}} \put(5.5, 2.5){\vector(1, 0){2}} \put(2.5, 2.5){\toval(5,5)} \put(5, 2.5){\tline(1,0){3}} \put(10.5, 2.5){\toval(5, 5)} \put(13, 2.5){\tline(1, 0){2}} \multiput(16, 2.5)(2, 0){3}{\tline(1, 0){1}} \put(22, 2.5){\tline(1, 0){2}} \put(26.5, 2.5){\toval(5, 5)} \end{picture} }}} % figures for $x_i^{}$ \newcommand{\xdouble}{{ \begin{picture}(14, 4) \put(7, 4){\toval(14, 8)[b]} \put(7, 4){\oval(10, 4)[b]} \end{picture}}} \newcommand{\xdelta}{ \begin{picture}(14, 6) \put(4, 0){\toval(8, 8)[tl]} \put(4, 0){\oval(4, 4)[tl]} \put(10, 0){\toval(8, 8)[tr]} \put(10, 0){\oval(4, 4)[tr]} \put(4, 0.5){\framebox(6, 5){$\Delta$}} \multiput(4.5, 5.5)(0, 2){3}{\line(0, 1){1}} \multiput(5.5, 5.5)(0, 2){3}{\line(0, 1){1}} \multiput(9.5, 5.5)(0, 2){3}{\line(0, 1){1}} \put(6, 7){...} \end{picture}} \newcommand{\xleft}{ \begin{picture}(13, 10) \put(12, 15.2){\framebox(3, 4.8){$\nu$}} \put(11, 15){\tline(0, 1){5}} \put(-1, 10){\framebox(15, 5){$S_1\Phi$}} \put(-1, 0){\framebox(15, 5){$S_1\Phi^{-1}$}} \put(2, 5){\tline(0, 1){5}} \put(2, 5){\vector(0, 1){2}} \put(11, 5){\tline(0, 1){5}} \put(13, 5){\line(0, 1){5}} \put(13, 7){\vector(0, -1){2}} \put(11, 7){\vector(0, -1){2}} \put(2, 8){\tline(1, 0){9}} \put(7, 8){\vector(1, 0){2}} \put(-2, 0){\toval(8, 8)[br]} \put(-2, 15){\toval(8, 18)[tr]} \end{picture}} \newcommand{\xright}{ \begin{picture}(15, 10) \put(0, 10){\framebox(15, 5){$S_1S_2\Phi^{-1}$}} \put(-5.2, 15.1){\framebox(8.7, 4.5){$e^{-\zeta/2}$}} \put(4, 15){\tline(0, 1){5}} \put(4, 16){\vector(0, 1){2}} \put(0, 0){\framebox(15, 5){$S_1S_2\Phi$}} \put(4, 5){\tline(0, 1){5}} \put(4, 5){\vector(0, 1){2}} \put(2, 5){\line(0, 1){5}} \put(2, 5){\vector(0, 1){2}} \put(13, 5){\tline(0, 1){5}} \put(13, 7){\vector(0, -1){2}} \put(4, 8){\tline(1, 0){9}} \put(7, 8){\vector(1, 0){2}} \put(17, 0){\toval(8, 8)[bl]} \put(17, 15){\toval(8, 18)[tl]} \end{picture}} % figures for chord diagrams \newcommand{\thetaone}{ \setlength{\unitlength}{1mm} \raisebox{-1mm}{ \begin{picture}(6, 5) \multiput(0, 0)(0, 2){3}{\line(0, 1){1}} \multiput(5, 0)(0, 2){3}{\line(0, 1){1}} \multiput(0, 0)(2, 0){3}{\line(1, 0){1}} \multiput(0, 2.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 5)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\Thetazero}{ \setlength{\unitlength}{1mm} \raisebox{-1mm}{ \begin{picture}(6, 5) \put(2.5, 2.5){\toval(5, 5)} \end{picture} } } \newcommand{\Thetaone}{ \setlength{\unitlength}{1mm} \raisebox{-1mm}{ \begin{picture}(6, 5) \put(2.5, 2.5){\toval(5, 5)} \multiput(0, 2.5)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdtheta}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 2.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 7.5)(2, 0){3}{\line(1, 0){1}} \multiput(5, 2.5)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\trivial}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(1, 10) \put(0, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdthetatwo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(10, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 2.5)(2, 0){5}{\line(1, 0){1}} \multiput(0, 7.5)(2, 0){5}{\line(1, 0){1}} \multiput(4.5, 2.5)(0, 2){3}{\line(0, 1){1}} \multiput(9, 2.5)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetasquare}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 1)(2, 0){3}{\line(1, 0){1}} \multiput(0, 4)(2, 0){3}{\line(1, 0){1}} \multiput(0, 6)(2, 0){3}{\line(1, 0){1}} \multiput(0, 9)(2, 0){3}{\line(1, 0){1}} \multiput(5, 1)(0, 2){2}{\line(0, 1){1}} \multiput(5, 6)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetabridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(8, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 3.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 8.5)(2, 0){3}{\line(1, 0){1}} \multiput(5, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(0, 2)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdthetabridgehalf}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(6, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 3.5)(2, 0){3}{\line(1, 0){1}} \multiput(0, 8.5)(2, 0){3}{\line(1, 0){1}} \multiput(5, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(0, 2)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdbridgetheta}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(2, 3.5)(2, 0){3}{\line(1, 0){1}} \multiput(2, 8.5)(2, 0){3}{\line(1, 0){1}} \multiput(2, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(0, 2)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridgetwo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 7)(2, 0){4}{\line(1, 0){1}} \multiput(0, 3)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridgethree}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 8)(2, 0){4}{\line(1, 0){1}} \multiput(0, 5)(2, 0){4}{\line(1, 0){1}} \multiput(0, 2)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(9, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 5)(2, 0){4}{\line(1, 0){1}} \put(7, 0){\tline(0,1){10}} \end{picture} } } \newcommand{\cdbridgehalf}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 10) \put(0, 0){\tline(0,1){10}} \multiput(0, 5)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdbranch}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(11, 10) \multiput(0, 0)(4.5, 0){3}{\tline(0,1){10}} \multiput(0, 4)(2, 0){5}{\line(1, 0){1}} \multiput(2.5, 4)(0, 1.5){2}{\line(0,1){1}} \put(3.5, 6.5){\line(1, 0){1}} \end{picture} } } \newcommand{\cdbranchbridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(11, 10) \multiput(0, 0)(4.5, 0){3}{\tline(0,1){10}} \multiput(0, 3)(2, 0){5}{\line(1, 0){1}} \multiput(2.5, 3)(0, 1.5){2}{\line(0,1){1}} \put(3.5, 5.5){\line(1, 0){1}} \multiput(0, 7.5)(1.7, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\gammatwobase}{ \multiput(4.5, 4.5)(14, 0){2}{\toval(9, 9)} \put(9, 4.5){\tline(1, 0){5}} } \newcommand{\gammatwo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \end{picture} } } \newcommand{\gammatwofirst}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(4.5, 0)(0, 2){5}{\line(0, 1){1}} \end{picture} } } \newcommand{\gammatwosecond}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(18.5, 0)(0, 2){5}{\line(0, 1){1}} \end{picture} } } \newcommand{\gammatwoboth}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(4.5, 0)(0, 2){5}{\line(0, 1){1}} \multiput(18.5, 0)(0, 2){5}{\line(0, 1){1}} \end{picture} } } \newcommand{\gammatwobridge}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(24, 10) \gammatwobase \multiput(9, 6)(2, 0){3}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdbridgethetatheta}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(6, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 1.5)(2, 0){2}{\line(1,0){1}} \multiput(0, 4.5)(2, 0){2}{\line(1,0){1}} \multiput(0, 6)(2, 0){2}{\line(1,0){1}} \multiput(0, 9)(2, 0){2}{\line(1,0){1}} \multiput(0, 10.5)(2, 0){3}{\line(1, 0){1}} \multiput(3, 1.5)(0, 2){2}{\line(0, 1){1}} \multiput(3, 6)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdbridgethetatwo}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(6, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 2)(2, 0){3}{\line(1,0){1}} \multiput(0, 7)(2, 0){3}{\line(1,0){1}} \multiput(0, 10)(2, 0){3}{\line(1, 0){1}} \multiput(2.5, 2)(0, 2){3}{\line(0, 1){1}} \multiput(5, 2)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdbridgeotheta}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(10, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 2)(2, 0){2}{\line(1,0){1}} \multiput(0, 5)(2, 0){2}{\line(1,0){1}} \multiput(3, 2)(0, 2){2}{\line(0, 1){1}} \multiput(0, 9)(2, 0){2}{\line(1, 0){1}} \multiput(6, 9)(2, 0){2}{\line(1, 0){1}} \multiput(3, 6.5)(0, 2){3}{\line(0, 1){1}} \multiput(6, 6.5)(0, 2){3}{\line(0, 1){1}} \multiput(3, 6.5)(2, 0){2}{\line(1,0){1}} \multiput(3, 11.5)(2, 0){2}{\line(1,0){1}} \end{picture} } } \newcommand{\cdbridgeotwo}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(16, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 6)(2, 0){2}{\line(1, 0){1}} \multiput(6, 6)(2, 0){2}{\line(1, 0){1}} \multiput(12, 6)(2, 0){2}{\line(1, 0){1}} \multiput(3, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(6, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(3, 3.5)(2, 0){2}{\line(1,0){1}} \multiput(3, 8.5)(2, 0){2}{\line(1,0){1}} \multiput(9, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(12, 3.5)(0, 2){3}{\line(0, 1){1}} \multiput(9, 3.5)(2, 0){2}{\line(1,0){1}} \multiput(9, 8.5)(2, 0){2}{\line(1,0){1}} \end{picture} } } \newcommand{\cdthetathree}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(4, 13) \put(0,0){\tline(0, 1){13}} \multiput(0, 1)(2, 0){2}{\line(1, 0){1}} \multiput(0, 4)(2, 0){2}{\line(1, 0){1}} \multiput(3, 1)(0, 2){2}{\line(0, 1){1}} \multiput(0, 5)(2, 0){2}{\line(1, 0){1}} \multiput(0, 8)(2, 0){2}{\line(1, 0){1}} \multiput(3, 5)(0, 2){2}{\line(0, 1){1}} \multiput(0, 9)(2, 0){2}{\line(1, 0){1}} \multiput(0, 12)(2, 0){2}{\line(1, 0){1}} \multiput(3, 9)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetaoo}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(7, 11) \put(0,0){\tline(0, 1){11}} \multiput(0, 2)(2, 0){3}{\line(1, 0){1}} \multiput(0, 9)(2, 0){3}{\line(1, 0){1}} \multiput(2.5, 2)(0, 2){4}{\line(0, 1){1}} \multiput(5, 2)(0, 1.5){2}{\line(0, 1){1}} \multiput(5, 6.5)(0, 1.5){2}{\line(0, 1){1}} \multiput(2.5, 4.5)(1.5, 0){2}{\line(1, 0){1}} \multiput(2.5, 6.5)(1.5, 0){2}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdthetadouble}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(4, 12) \put(0,0){\tline(0, 1){12}} \multiput(0, 2)(2, 0){2}{\line(1, 0){1}} \multiput(0, 5)(2, 0){2}{\line(1, 0){1}} \multiput(3, 2)(0, 2){2}{\line(0, 1){1}} \multiput(0, 7)(2, 0){2}{\line(1, 0){1}} \multiput(0, 10)(2, 0){2}{\line(1, 0){1}} \multiput(3, 7)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetafour}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(4, 17) \put(0,0){\tline(0, 1){17}} \multiput(0, 1)(2, 0){2}{\line(1, 0){1}} \multiput(0, 4)(2, 0){2}{\line(1, 0){1}} \multiput(3, 1)(0, 2){2}{\line(0, 1){1}} \multiput(0, 5)(2, 0){2}{\line(1, 0){1}} \multiput(0, 8)(2, 0){2}{\line(1, 0){1}} \multiput(3, 5)(0, 2){2}{\line(0, 1){1}} \multiput(0, 9)(2, 0){2}{\line(1, 0){1}} \multiput(0, 12)(2, 0){2}{\line(1, 0){1}} \multiput(3, 9)(0, 2){2}{\line(0, 1){1}} \multiput(0, 13)(2, 0){2}{\line(1, 0){1}} \multiput(0, 16)(2, 0){2}{\line(1, 0){1}} \multiput(3, 13)(0, 2){2}{\line(0, 1){1}} \end{picture} } } \newcommand{\Bone}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \end{picture} } } \newcommand{\Btwo}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \multiput(0, 5.5)(2, 0){6}{\line(1, 0){1}} \end{picture} } } \newcommand{\Bthree}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \multiput(0, 5.5)(2, 0){2}{\line(1, 0){1}} \multiput(8, 5.5)(2, 0){2}{\line(1, 0){1}} \multiput(3, 8)(2, 0){3}{\line(1, 0){1}} \multiput(3, 3)(2, 0){3}{\line(1, 0){1}} \multiput(3, 3)(0, 2){3}{\line(0, 1){1}} \multiput(8, 3)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\Bfour}{ \setlength{\unitlength}{1mm} \raisebox{-7mm}{ \begin{picture}(12, 12) \put(5.5, 5.5){\toval(11,11)} \multiput(0, 4.5)(2, 0){6}{\line(1, 0){1}} \multiput(0, 6.5)(2, 0){6}{\line(1, 0){1}} \end{picture} } } \newcommand{\cdthetao}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(6, 10) \put(0,0){\tline(0, 1){10}} \multiput(0, 2)(2, 0){3}{\line(1,0){1}} \multiput(0, 7)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 2)(0, 2){3}{\line(0, 1){1}} \multiput(5, 2)(0, 2){3}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetas}{ \setlength{\unitlength}{1mm} \raisebox{-4mm}{ \begin{picture}(6, 10) \put(0,0){\tline(0, 1){10}} \multiput(0, 1.5)(2, 0){3}{\line(1,0){1}} \multiput(0, 4)(1.5, 0){2}{\line(1,0){1}} \multiput(0, 6)(1.5, 0){2}{\line(1,0){1}} \multiput(0, 8.5)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 1.5)(0, 2){4}{\line(0, 1){1}} \multiput(5, 1.5)(0, 2){4}{\line(0, 1){1}} \end{picture} } } \newcommand{\cdthetaosquare}{ \setlength{\unitlength}{1mm} \raisebox{-5mm}{ \begin{picture}(6, 12) \put(0,0){\tline(0, 1){10}} \multiput(0, 2)(2, 0){3}{\line(1,0){1}} \multiput(0, 5)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 2)(0, 2){2}{\line(0, 1){1}} \multiput(5, 2)(0, 2){2}{\line(0, 1){1}} \multiput(0, 7)(2, 0){3}{\line(1,0){1}} \multiput(0, 10)(2, 0){3}{\line(1,0){1}} \multiput(2.5, 7)(0, 2){2}{\line(0, 1){1}} \multiput(5, 7)(0, 2){2}{\line(0, 1){1}} \end{picture} } } % Topmatter \begin{document} \baselineskip20pt % Title \title[Mapping class groups via universal invariant]{Representation of mapping class groups via \\ the universal perturbative invariant} \author[Jun Murakami]{Jun Murakami \\ Department of Mathematics \\ Osaka University} \address{Department of Mathematics, Osaka University, Toyonaka, Osaka 560, Japan} \email{jun@@math.sci.osaka-u.ac.jp} %\date{25 December, 1996} \thanks{This research is supported in part by Grand-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.} \keywords{mapping class groups, invariant of 3-manifolds, topological quantum field theory} \maketitle \begin{abstract} We introduce a new method to construct representations of mapping class groups of closed oriented surfaces by using the universal perturbative invariant of 3-manifolds with boundary. We also give examples for genus one and two cases, including a representation which is non-trivial on the Torelli subgroup. \end{abstract} \section*{Introduction.} By using the Kontsevich invariant \cite{K,B}, Le, Ohtsuki and the author introduced in \cite{LMO} the universal perturbative invariant of closed 3-manifold. It is $\cA(\phi)$-valued invariant, where $\cA(\phi)$ is a $\Bbb C$-linear span of trivalent graphs with relations "anti-symmetry relation" around the vertex and "IHX relation" corresponding to the Jacobi identity of Lie algebras. $\cA(\phi)$ has an algebra structure with multiplication given by the disjoint union of two graphs. \par In \cite{MO}, this invariant is generalized for 3-manifolds with boundary. Let $M$ be a 3-manifold with boundary $\del M$. If the boundary $\del M$ is connected and of genus $g$, then the values of this invariant is in the ${\cal A}(\phi)$-module $\cA(\Gamma_g)$, where $\cA(\Gamma_g)$ is the space of chord diagrams on the graph $\Gamma_g$, and $\Gamma_g$ is the oriented trivalent graph with $g$ circles as in Figure \ref{fig:Gammag}. We call $\Gamma_g$ the {\it chain graph} of genus $g$. By considering the action of the mapping class group of $\del M$, we derive representation of the mapping class group of a closed surface of genus $g$. \begin{figure}[htb] $$ \underbrace{\Gammag}_{\text{$g$ circles}} $$ \caption{The graph $\Gamma_g$ corresponding to a closed surface of genus $g$} \label{fig:Gammag} \end{figure} \section{Universal perturbative invariant of graphs embedded in 3-manifolds} In this section, we review the result in Section 2 of \cite{MO}. Some parts are modified for later use. \subsection{Space of chord diagrams} % definition of chord diagram Let $X$ be a union of copies of $S^1$ and framed trivalent graphs. A chord diagram with support $X$ means a set of pairs of distinct points on $X$. Graphically, each pair is displayed by a dashed line, and the two end points of the dashed line represent the corresponding pair of points. Let $\cA(X)$ be the ${\Bbb C}$-linear space spanned by chord diagrams with support $X$, subject to the AS, IHX and STU relation in \cite{MO}. By STU relation, we impose chord diagrams with trivalent vertices of dashed lines. We call $\cA(X)$ the {\it space of chord diagrams with support $X$}. \par % degree Let $D$ be a chord diagram in $\cA(X)$. A vertex of $D$ is called an {\it inner vertex} if it is end points of only dashed lines. We define the {\it i-degree} of $D$ to be the number of inner vertices of $D$. Let $\cA_n(X)$ be the subspace of $\cA(X)$ spanned by chord diagrams with i-degree more or equal to $n$. Then $\cA(X)$ is filtered as $$ % filtering \cA(X) = \cA_0(X) \supset \cA_1(X) \supset \cA_2(X) \supset \cdots . $$ \subsection{Invariant of graphs embedded in a 3-manifold} \par % surgery Let $L$ be a framed link and $G$ an embedding of $\Gamma$ in $S^3$ disjoint to $L$ as before. Let $M$ be a 3-manifold obtained by the surgery along $L$. Then, after the surgery, the image of $G$ is an embedding of $\Gamma$ in $M$, and we use $G$ again for this embedding in $M$. Let ${\cal \AA}(X)$ be the space of chord diagrams including trivial circles of dashed lines. Let $P_n$ be the relation in Figure \ref{fig:Pn} introduced in \cite{LMO}. Let $O_n$ be the relation also introduced in \cite{LMO} so that a trivial circle of a dashed line is equivalent to $-2n$. Let $$ {\cA}^{(n)}(\Gamma) = {\cA}(\Gamma)/O_n, P_{n+1}, \cA_{2n+1}(\Gamma) $$ Then ${\cA}^{(n)}(\Gamma)$ is a ${\cA}^{(n)}(\phi)$-module where the multiplication is given by the split union of chord diagrams. We call $n$ the {\it degree}. As in \cite{MO}, we have a natural coproduct $$ % coproduct \Delta_{n, m} : {\cA}^{(n)}(\Gamma) \longrightarrow {\cA}^{(m)}(\Gamma) \otimes {\cA}^{(n-m)}(\Gamma), $$ which is a ${\cA}^{(n)}(\phi)$-module homomorphism. \par % iota Let $\iota^{(n)}$ the mapping from $\cA(\sqcup^\ell S^1 \cup \Gamma)$ to ${\cA}^{(n)}(\Gamma)$ defined in \cite{MO} by replacing the solid lines with $m$ end points of dashed lines by $T_m^n$ and then take the image in ${\cA}^{(n)}(\Gamma)$. Recall that $T_m^n = 0$ if $m < 2n$. \par % Kontsevich invariant Let $\check Z(L\cup G)$ be the invariant of $L \cup G$ in $S^3$ defined in Section 2.2 of \cite{MO}, which is in $\cA(\sqcup^\ell S^1 \cup \Gamma)$, where $\ell$ is the number of connected components of $L$. Let $\check Z^{(n)}(L\cup G)$ be the image of $\check Z(L\cup G)$ in $\cA^{(n)}(\sqcup^\ell S^1 \cup \Gamma)$. \par % definition of Y Let $U_+$ and $U_-$ be trivial knots with $\pm1$ framings respectively. Let $$ Y^{(n)}(L\cup G) = \frac{\iota^{(n)}(\check Z(L \cup G))} {\left( \sqrt{\iota^{(n)}(\check Z(U_+)) \, \iota^{(n)}(\check Z(U_-))} \right)^\ell}, $$ where $\ell$ is the number of components of $L$. The invariant $\Omega_n(M, G)$ in \cite{MO} is normalized by signatures concerning to $M$ and $G$, while $Y^{(n)}(L\cup G)$ in ${\cA}^{(n)}(\Gamma)$ is normalized only for the number of components. Note also that we impose different degree to the space ${\cA}^{(n)}(\Gamma)$ from the degree of $\cA(\Gamma)$ in \cite{MO}. \begin{figure}[htb] % action \begin{center} \setlength{\unitlength}{1mm} $P_1$ : $\raisebox{-4mm}{ \begin{picture}(2, 10) \multiput(1, 0)(0, 2){5}{\line(0, 1){1}} \end{picture}} = 0$, \quad $P_2$ : $\raisebox{-4mm}{ \begin{picture}(10, 10) \multiput(1, 0)(0, 2){5}{\line(0, 1){1}} \multiput(9, 0)(0, 2){5}{\line(0, 1){1}} \end{picture}} + \raisebox{-4mm}{\begin{picture}(10, 10)(-1, 0) \multiput(0, 0)(0, 2){2}{\line(0, 1){1}} \multiput(7, 0)(0, 2){2}{\line(0, 1){1}} \multiput(0, 6)(0, 2){2}{\line(0, 1){1}} \multiput(7, 6)(0, 2){2}{\line(0, 1){1}} \multiput(0, 3)(2, 0){4}{\line(1, 0){1}} \multiput(0, 6)(2, 0){4}{\line(1, 0){1}} \end{picture}} + \raisebox{-5mm}{ \begin{picture}(10, 10) \multiput(0, 0)(0, 2){2}{\line(0, 1){1}} \multiput(0, 3)(1.5, 0){3}{\line(1, 0){1}} \multiput(4, 3)(0, 1.5){3}{\line(0, 1){1}} \multiput(4, 7)(1.5, 0){3}{\line(1, 0){1}} \multiput(8, 7)(0, 2){2}{\line(0, 1){1}} \multiput(8, 0)(0, 2){3}{\line(0, 1){1}} \multiput(0, 5)(1.75, 0){5}{\line(1, 0){1}} \multiput(0, 5)(0, 2){3}{\line(0, 1){1}} \end{picture}} = 0$, \quad $P_3$ : $\cdots\cdots$ \caption{The reltaion $P_n$} \label{fig:Pn} \end{center} \end{figure} \section{Representations of mapping class groups} \subsection{Action of the mapping class group ${\cal M}_g$} \par % generators Let $\cMg$ be the mapping class group of a closed oriented surface of genus $g$. Then $\cM_1$ is generated by $\alpha_1^{}$ and $\beta_1$, and $\cMg$ is generated by $\alpha_1^{}$, $\beta_1$, $\alpha_2^{}$, $\beta_2$, $\cdots$, $\alpha_g^{}$, $\beta_g$ and $\delta$ in Figure \ref{fig:generators} as shown in \cite{H}. A simple relation for these generators is given in \cite{W}. \begin{figure}[htb] \begin{center} \setlength{\unitlength}{1mm} \begin{picture}(70, 15) \put(33, 7.5){\oval(66, 15)[l]} \multiput(35, 0)(4, 0){3}{\line(1, 0){2}} \multiput(35, 15)(4, 0){3}{\line(1, 0){2}} \put(47, 7.5){\oval(46, 15)[r]} \put(7.5, 7.5){\thicklines\oval(5, 5)} \put(17.5, 7.5){\thicklines\oval(5, 5)} \put(27.5, 7.5){\thicklines\oval(5, 5)} \put(52.5, 7.5){\thicklines\oval(5, 5)} \put(62.5, 7.5){\thicklines\oval(5, 5)} \put(1, 7.5){\oval(2, 3)[tl]} \put(1.5, 8.9){\line(1, 0){0.7}} \put(2.8, 8.9){\line(1, 0){0.7}} \put(4, 7.5){\oval(2, 3)[tr]} \put(2.5, 7.5){\thicklines\oval(5, 3)[b]} \put(11, 7.5){\oval(2, 3)[tl]} \put(11.5, 8.9){\line(1, 0){0.7}} \put(12.8, 8.9){\line(1, 0){0.7}} \put(14, 7.5){\oval(2, 3)[tr]} \put(12.5, 7.5){\thicklines\oval(5, 3)[b]} \put(21, 7.5){\oval(2, 3)[tl]} \put(21.5, 8.9){\line(1, 0){0.7}} \put(22.8, 8.9){\line(1, 0){0.7}} \put(24, 7.5){\oval(2, 3)[tr]} \put(22.5, 7.5){\thicklines\oval(5, 3)[b]} \put(31, 7.5){\oval(2, 3)[tl]} \put(31.5, 8.9){\line(1, 0){0.7}} \put(47.8, 8.9){\line(1, 0){0.7}} \put(49, 7.5){\oval(2, 3)[tr]} \put(47.5, 7.5){\thicklines\oval(5, 3)[br]} \put(32.5, 7.5){\thicklines\oval(5, 3)[bl]} \put(56, 7.5){\oval(2, 3)[tl]} \put(56.5, 8.9){\line(1, 0){0.7}} \put(57.8, 8.9){\line(1, 0){0.7}} \put(59, 7.5){\oval(2, 3)[tr]} \put(57.5, 7.5){\thicklines\oval(5, 3)[b]} \put(17.5, 11){\oval(3, 1.5)[bl]} \put(16, 11.5){\line(0, 1){0.7}} \put(16, 12.8){\line(0, 1){0.7}} \put(17.5, 14){\oval(3, 2)[tl]} \put(17.5, 12.5){\thicklines\oval(3, 5)[r]} \put(2.5, 3){$\alpha_1^{}$} \put(7, 1){$\beta_1^{}$} \put(12, 3){$\alpha_2^{}$} \put(17, 1.5){$\beta_2^{}$} \put(22, 3){$\alpha_3^{}$} \put(27, 1.5){$\beta_3^{}$} \put(20, 11){$\delta$} \put(50, 1.5){$\beta_{g-1}^{}$} \put(56, 3){$\alpha_g^{}$} \put(61, 1.5){$\beta_g^{}$} \end{picture} \caption{Generators of $\cMg$} \label{fig:generators} \end{center} \end{figure} \par % graph description Let $M$ be a 3-manifold whose boundary is a genus $g$ surface $S$. In $S$, a set $F$ of meridians and framings are fixed. Filling the boundary $S$ of $M$ by the handle body of genus $g$ along the meridians and framings, we get a closed 3-manifold $\widehat M$. Let $G$ be the embedding of the chain graph $\Gamma_g$ in the handle body as in Figure \ref{fig:handle}. Let $e_1^{}$, $e_2^{}$, $\cdots$, $e_{3g-3}^{}$ be the edges of $G$ as in Figure \ref{fig:handle}. \begin{figure}[htb] % embedded G \begin{center} \setlength{\unitlength}{1mm} \begin{picture}(76, 15) \multiput(8.5, 11)(12, 0){3}{\vector(-1, 0){2}} \multiput(57.5, 11)(12, 0){2}{\vector(-1, 0){2}} \multiput(12.5, 7.5)(12, 0){2}{\vector(1, 0){2}} \put(61.5, 7.5){\vector(1, 0){2}} \put(35, 7.5){\oval(74, 15)[l]} \multiput(39, 0)(4, 0){3}{\line(1, 0){2}} \multiput(39, 15)(4, 0){3}{\line(1, 0){2}} \put(51, 7.5){\oval(50, 15)[r]} \put(7.5, 7.5){\oval(3, 3)} \put(19.5, 7.5){\oval(3, 3)} \put(31.5, 7.5){\oval(3, 3)} \put(56.5, 7.5){\oval(3, 3)} \put(68.5, 7.5){\oval(3, 3)} \put(7.5, 7.5){\toval(7, 7)} \put(19.5, 7.5){\toval(7, 7)} \put(31.5, 7.5){\toval(7, 7)} \put(56.5, 7.5){\toval(7, 7)} \put(68.5, 7.5){\toval(7, 7)} \put(11, 7.5){\tline(1,0){5}} \put(23, 7.5){\tline(1,0){5}} \put(60, 7.5){\tline(1,0){5}} \multiput(35, 7.5)(2,0){3}{\tline(1,0){1}} \multiput(48, 7.5)(2,0){3}{\tline(1,0){1}} \put(35, 2){$G$} \put(6, 1.2){$e_1^{}$} \put(12, 4){$e_2^{}$} \put(18, 1.2){$e_3^{}$} \put(18, 12.5){$e_4^{}$} \put(24, 4){$e_5^{}$} \put(30, 1.2){$e_6^{}$} \put(30, 12.5){$e_7^{}$} \put(51, 1.6){$e_{3g-6}^{}$} \put(51, 12.6){$e_{3g-5}^{}$} \put(60, 2.8){$e_{3g-4}^{}$} \put(63, 12.6){$e_{3g-3}^{}$} \end{picture} \caption{A chain graph embedded in a handle body} \label{fig:handle} \end{center} \end{figure} \par % action to the graph The mapping class group $\cM_g$ acts on $S$, and this action changes the set of meridians and framings of $S$. Let $x$ be an element of $\cM_g$, and $(\widehat{xM}, xG)$ the pair of the 3-manifold and the graph embedded in $\widehat{xM}$ corresponding to $xF$, the set of meridians and framings of $S$ changed by the action of $x$. \subsection{Surgery descriptions of the action} \par % alpha The actions of the generators of $\cM_g$ are described by surgeries. The actions of $\alpha_1^{}$, $\alpha_g^{}$ and $\delta$ are given by the $-1$ surgery along a trivial knot around the edge $e_1^{}$, $e_{4}^{}$ and $e_{3g-3}^{}$ respectively as in Figure \ref{fig:alpha}. The action of $\alpha_i^{}$ ($2 \leq i \leq g-1$) is given by the $-1$ surgery along a trivial knot around the edges $e_{3i-5}^{}$ and $e_{3i-3}^{}$ as in Figure \ref{fig:alpha}. \par % beta The action of $\beta_i^{}$ is given as follows. Make a knot parallel to the edges $e_{3i-3}^{}$ and $e_{3i-2}$ as in Figure \ref{fig:alpha} and add $-1$ to the framing of this newly added knot. Then the surgery along this knot gives the action of $\beta_i^{}$. \begin{figure}[htb] % action \begin{center} \setlength{\unitlength}{1mm} % alpha_1 $ \begin{matrix} \begin{picture}(10, 15) \put(0, 0){\figH} \end{picture} \\ \text{$e_1^{}$, (resp. $e_4^{}$, $e_{3g-3}^{}$)} \\ {} \\ \text{action of $\alpha_1^{}$ (resp. $\delta$, $\alpha_g^{}$)} \end{matrix}$, \quad % alpha_i $\begin{matrix} \begin{picture}(15, 15) \put(7.5, 6){\oval(15, 3)[b]} \put(4.5, 6){\oval(9, 3)[tl]} \put(10.5, 6){\oval(9, 3)[tr]} \put(5.5, 7.4){\line(1,0){4}} \put(5, 0){\tline(0, 1){4}} \put(5, 5){\tline(0, 1){6}} \put(10, 0){\tline(0, 1){4}} \put(10, 5){\tline(0, 1){6}} \multiput(5, 4)(5, 0){2}{\vector(0, -1){2}} \put(5, 9){\tline(1, 0){5}} \put(6, 13){$e_{3i-4}^{}$} \put(-3, 8){$-1$} \end{picture} \\ e_{3i-5}^{}\ e_{3i-3}^{} \\{}\\ \text{action of $\alpha_i^{}$} \end{matrix}$, \quad % beta_1 $\begin{matrix} \begin{picture}(11, 15)(2, -1) \put(11,4){\tline(1, 0){2}} \put(7.5, 8.5){\vector(-1, 0){2}} \put(6.5, 4){\toval(9, 9)} \put(6.5, 4){\oval(7, 7)} \put(3.5, 1.5){$-1$} \end{picture} \\ e_{1}^{} \\{}\\ \text{action of $\beta_1^{}$} \end{matrix}$, \quad % beta_i $\begin{matrix} \begin{picture}(13, 15)(0, -1) \put(7.5, 8.5){\vector(-1, 0){2}} \put(0,4){\tline(1, 0){2}} \put(6.5, 4){\toval(9, 9)} \put(11, 4){\tline(1, 0){2}} \put(6.5, 4){\oval(7, 7)} \put(3.5, 1.5){$-1$} \put(4, 11.5){$e_{3i-2}^{}$} \end{picture} \\ e_{3i-3}^{} \\{}\\ \text{action of $\beta_i^{}$} \end{matrix}$, \quad % beta_g $\begin{matrix} \begin{picture}(11, 15)(0, -1) \put(7.5, 8.5){\vector(-1, 0){2}} \put(0,4){\tline(1, 0){2}} \put(6.5, 4){\toval(9, 9)} \put(6.5, 4){\oval(7, 7)} \put(3.5, 1.5){$-1$} \end{picture} \\ e_{3g-3}^{} \\{}\\ \text{action of $\beta_g^{}$} \end{matrix}$ \caption{Actions of the generators} \label{fig:alpha} \end{center} \end{figure} \par % inverse By changing the numbers $-1$ for the framings to $+1$ in the above constructions, we get actions of inverses of the corresponding generators. \subsection{Central extension of $\cM_g$} \par Assume that $\widehat M$ is obtained by a surgery along a framed link $L$ in $S^3$ whose image is disjoint with the graph $G$. We also denote the preimage of $G$ in $S^3$ by $G$. From $L \cup G$ in $S^3$, we defined $Y^{(n)}(L \cup G)$ in $\cA^{(n)}(\Gamma_g)$. \par % extension Let $w$ be a word of generators of $\cM_g$. By using the surgery description of the actions, we define $w L$ as a union of $L$ and all knots added by the actions of generators in $w$. If the word $w$ represents the identity in $\cM_g$, then, by using the Kirby moves for a graph embedded in a 3-manifold introduced in \cite{MO}, $w L$ is equivalent to a split union $L \sqcup L^\prime$, where $L^\prime$ is a split union of trivial knots with $\pm1$ framings. Let $s(w)$ be the sum of framings of $L^\prime$. Let $\widetilde \cM_g$ be a central extension of $\cM_g$ corresponding to the signature, i.e. \begin{multline*} % definition \widetilde \cM_g = < {\alpha_1^{}}^{\pm1}, \cdots, {\alpha_g^{}}^{\pm1}, \delta^{\pm1}, {\beta_1^{}}^{\pm1}, \cdots, {\beta_g^{}}^{\pm1}, \gamma^{\pm1} \mid \gamma : \text{central element}, \\ w = \gamma^{s(w)}\quad \text{if a word $w$ represents identity in $\cM_g$} >. \end{multline*} \par % action on Y Let $\widehat {wM}$ be the 3-manifold obtained by the surgery along $w L$. Then $(w L, G)$ corresponds to $(\widehat {wM}, G)$. Let $w Y^{(n)}(L \cup G) =Y^{(n)}(w L \cup G)$, then this gives a well-defined action of $\widetilde cM_g$ to $ Y^{(n)}(L \cup G)$. \subsection{Action on $\cA^{(n)}(\Gamma_g)$} % \par We extend the previous action of $\widetilde \cM_g$ to the action on $\cAGammag$. Let $\varepsilon_i^{}$ be the edge of $\Gamma$ corresponding to the edge $e_i^{}$ of $G$. Let $H$ be a $(1$, $1)$-tangle with a straight string and a $-1$ framed trivial knot around the string as in Figure \ref{fig:H}. Let $$ % \eta \eta = \sqrt{\iota^{(n)}(\check Z(U_+)) \, \iota^{(n)}(\check Z(U_-))}. $$ \begin{figure}[htb] \begin{center} \setlength{\unitlength}{1mm} \figH \caption{The tangle associated with the action of $\alpha_1^{}$} \label{fig:H} \end{center} \end{figure} \par % \alpha_1, \delta Let $x$ be an element in $\cAGammag$. We assume that end points of chords in the chord diagrams in $x$ are only on the edges $\varepsilon_1^{}$, $\varepsilon_4^{}$, $\varepsilon_7^{}$, $\cdots$, $\varepsilon_{3g-8}^{}$, $\varepsilon_{3g-5}^{}$, $\varepsilon_{3g-3}^{}$. The actions of $\alpha_1^{}$, $\alpha_g^{}$ and $\delta$ are defined by $$ % action \alpha_1^{} x = \eta^{-1} \, \iota^{(n)} (\widehat Z(H) \csumat{ \varepsilon_1^{}} x), \quad \delta^{} x = \eta^{-1} \, \iota^{(n)} (\widehat Z(H) \csumat{ \varepsilon_4^{}} x) , \quad \alpha_g^{} x = \eta^{-1} \, \iota^{(n)} (\widehat Z(H) \csumat{ \varepsilon_{3g-3}^{}} x). $$ where $$ % \nu \nu = Z(\bigcirc)^{-1}, $$ the Kontsevich invariant of a 0-framed knot $\bigcirc$, which is a normalization factor used in the definition of link invariant $\widehat Z$, and $\csumat{\varepsilon_i^{}}$ means the insertion of $\widehat Z(H)$ to the edge $\varepsilon_i^{}$. By using the second Kirby move, inserting $H$ to an edge $\varepsilon$ of the graph $G$ is equivalent to insert a positive twist at the edge $\varepsilon$ and add a trivial $-1$ framed knot $U_-$ as a split union as in Figure \ref{fig:split}. Hence, we get the following. \begin{figure}[htb] \begin{center} \setlength{\unitlength}{1mm} $ \raisebox{-3mm}{\figH} \underset{\text{KII move}}{\sim} \raisebox{-3mm}{ \begin{picture}(22, 12) \put(5, 5){\oval(10, 3)} \put(-3, 7){$-1$} \put(12, 0){\tline(0, 1){4}} \put(12, 6){\tline(0, 1){4}} \put(24, 4){\tline(0, 1){2}} \put(18, 0){\tline(1, 0){2}} \put(18, 10){\tline(1, 0){2}} \put(12, 4){\tline(1, 1){6}} \put(20, 0){\tline(1, 1){4}} \put(24, 6){\tline(-1, 1){4}} \put(18, 0){\tline(-1, 1){4}} \put(12, 3){\vector(0, -1){2}} \end{picture} } $ \caption{Apply the second Kirby move (KII) to $H$} \label{fig:split} \end{center} \end{figure} \begin{lem} The action of $\alpha_1^{}$, $\delta$ and $\alpha_g^{}$ are given by \begin{align*} \alpha_1^{} x = \eta^{-1} \, \iota^{(n)}(\check Z(U_-)) \, (\exp(\frac{\zeta}{2}) \csumat{\varepsilon_1^{}} x), \qquad \delta x =& \eta^{-1} \, \iota^{(n)}(\check Z(U_-)) \, (\exp(\frac{\zeta}{2}) \csumat{\varepsilon_4^{}} x), \\ \alpha_g^{} x = \eta^{-1} \, \iota^{(n)}(\check Z(U_-)) \, &(\exp(\frac{\zeta}{2}) \csumat{\varepsilon_{3g-3}^{}} x). \end{align*} where $\zeta$ is the chord diagram on one open solid line with one chord as in Figure \ref{fig:zeta}, and \begin{equation} % \exp(\zeta) \exp(\frac{\zeta}{2}) = (\text{\rm{open solid line without chord}}) + \sum_{k=1}^{\infty} \frac{\zeta^k}{2^k \, k!} \end{equation} \end{lem} \begin{figure}[htb] % zeta \begin{center} \cdtheta \caption{Chord diagram $\zeta$} \label{fig:zeta} \end{center} \end{figure} \par % \alpha_i The actions of $\alpha_i^{}$ is defined by $$ % action \alpha_i^{} x = \eta^{-1} \, \iota^{(n)} (S_1(\Delta(\widehat Z(H))) \csumat{ \varepsilon_{3i-5}^{}, \varepsilon_{3i-3}^{}} x), $$ where $\Delta$ is the coproduct applied to the straight string of $H$, $S_1$ is the antipode for the left string of $\Delta(\widehat Z(H))$, and $\csumat{ \varepsilon_{3i-5}^{}, \varepsilon_{3i-3}^{}}$ means the substitution of $\Delta(\widehat Z(H))$ just below the edge $ \varepsilon_{3i-4}^{}$ as in Figure \ref{fig:alphai}. By using the second Kirby move as before, we get the following. \begin{figure}[htb] \begin{center} \setlength{\unitlength}{1mm} $\begin{matrix} \begin{picture}(15, 15) \put(5, 0){\vector(0, 1){2}} \put(10, 2){\vector(0, -1){2}} \put(5, 0){\vector(0, 1){2}} \put(6.5, 9){\vector(1, 0){2}} \put(5, 8){\tline(0, 1){3}} \put(10, 0){\tline(0, 1){2}} \put(10, 8){\tline(0, 1){3}} \put(5, 9){\tline(1, 0){5}} \put(-2, 2){\framebox(19, 6){$\scriptstyle S_1(\Delta(\widehat Z(H)))$}} \put(6, 13){$\varepsilon_{3i-4}^{}$} \end{picture} \\ \varepsilon_{3i-5}^{}\ \varepsilon_{3i-3}^{} \end{matrix}$ \caption{Action of $\alpha_i^{}$} \label{fig:alphai} \end{center} \end{figure} \begin{lem} The action of $\alpha_i^{}$ is given by $$ \alpha_i^{} x = \eta^{-1} \, \iota^{(n)}(\check Z(U_-)) \, (S_1(\Delta(\exp(\frac{\zeta}{2}))) \csumat{ \varepsilon_{3i-5}^{}, \varepsilon_{3i-3}^{}} x). $$ \end{lem} \par % \beta_1 The action of $\beta_i^{}$ is given by $$ % action of \beta_i \beta_i^{} x = \eta^{-1} \, \iota^{(n)}(x_i^{}), $$ where $x_i^{}$ is given in Figure \ref{fig:xi}. In the figure, $\Delta$ means the coproduct acting on the end points on the edges. \begin{figure}[htb] \begin{center} \setlength{\unitlength}{1mm} $\begin{matrix} \begin{picture}(53, 35)(-18, 0) \put(0, 24){\xdelta} \put(10, 4){\xright} \put(0, 0){\xdouble} \put(1.2, 4){\tline(0, 1){20}} \put(3.2, 9){\line(0, 1){15}} \put(2, 4){\framebox(3, 4.8){$\nu$}} \put(-3, 2){$\varepsilon_1^{}$} \put(29, 0){$\varepsilon_4^{}$} \put(27, 24){$\varepsilon_3^{}$} \end{picture} \\ x_1^{} \end{matrix} \quad \begin{matrix} \begin{picture}(54, 35)(-15, 0) \put(0, 24){\xdelta} \put(10, 4){\xright} \put(-11, 4){\xleft} \put(0, 0){\xdouble} \put(-18, 23){$\varepsilon_{3i-6}^{}$} \put(-18, 2){$\varepsilon_{3i-5}^{}$} \put(-6, 0){$\varepsilon_{3i-3}^{}$} \put(26, 23){$\varepsilon_{3i+1}^{}$} \put(26, 2){$\varepsilon_{3i}^{}$} \end{picture} \\ x_i^{} \end{matrix} \quad \begin{matrix} \begin{picture}(38, 35)(-15, 0) \put(0, 24){\xdelta} \put(-11, 4){\xleft} \put(0, 0){\xdouble} \put(13.2, 4){\line(0, 1){5}} \put(6, 9.1){\framebox(8.7, 4.5){$e^{-\zeta/2}$}} \put(15.2, 4){\tline(0, 1){20}} \put(13.2, 13.8){\line(0, 1){10.4}} \put(-18, 23){$\varepsilon_{3g-6}^{}$} \put(-18, 2){$\varepsilon_{3g-5}^{}$} \put(16, 18){$\varepsilon_{3g-3}^{}$} \end{picture} \\ x_g^{} \end{matrix}$ \caption{$x_i^{}$} \label{fig:xi} \end{center} \end{figure} \par % prop From the construction of the above actions, we get the following. \begin{prop} The actions of $\alpha_1^{}$, $\cdots$, $\alpha_g^{}$, $\beta_1^{}$, $\cdots$, $\beta_g^{}$, $\delta$ defines an action of $\widetilde \cM_g$ on $\cA^{(n)}(\Gamma_g)$. The central element $\gamma$ acts as a multiplication by $\eta^{-1} \, \iota^{(n)}(\check Z(U_+))$ in $\cA^{(n)}(\phi)$. \end{prop} Let $\widetilde\rho_g^{(n)}$ denote the above representation of $\widetilde \cM_g$ on $\cA^{(n)}(\Gamma_g)$. We call $\widetilde\rho_g^{(n)}$ {\it a perturbative representation of genus $g$ and degree $n$}. \begin{rem} Let $\rho_g^{(n)}$ be the representation of $\widetilde \cM_g$ defined by $$ \rho_g^{(n)}(x) = \det(\widetilde \rho_g^{(n)}(x))^{-1} \, \widetilde \rho_g^{(n)}(x). $$ If $g = 1$ or $2$, then $\widetilde \cM_g$ is isomorphic to $\cM_g \times {\Bbb Z}$. Hence, $\rho_g^{(n)}$ gives a representation of $\cM_g$. \end{rem} \section{Perturbative representation of genus one and degree one} In the rest of this note, we explicitly describe representations $\widetilde\rho_g^{(n)}$ of $\widetilde\cM_g$ on $\cA^{(n)}(\Gamma_g)$ for some pairs of $g$ and $n$. For the genus one and degree one case, such representation is also constructed in \cite{M} with slightly different action. \par In the rest of this paper, $\theta$ denote the chord diagram in $\cA(\phi)$ of shape like the letter $\theta$, i.e. \begin{equation} \theta = \thetaone. \end{equation} \subsection{Preparation} \par % some constants The algebra $\cA^{(1)}(\phi)$ is a two-dimensional algebra over ${\Bbb C}$, i.e. $$ \cA^{(1)}(\phi) \cong {\Bbb C} + {\Bbb C}\, \theta, $$ where $\theta^2= 0$. We already know $\iota^{(1)}(U_{\pm})$ as in Lemma 4.3 of \cite{LMO}, which is $$ \iota^{(1)}(\check Z(U_{\pm})) = \mp1 + \frac{\theta}{16}. $$ Hence, $\eta = \sqrt{-1}$, and so $\eta^{-1} \iota^{(1)}(\check Z(U_-)) = -\sqrt{-1} \, (1 + \displaystyle\frac{\theta}{16})$. The space $\cA^{(1)}(S^1)$ is spanned by $\Thetazero$ and $\Thetaone$ as $\cA^{(1)}(\phi)$-module. Modulo the relation $P_2$, we have \begin{equation} % cdthetabridge \cdthetabridgehalf = -\frac{1}{12} \cdbridgehalf \, \theta \label{eq:cdthetabridge} \end{equation} and \begin{equation} % \exp(\zeta) \exp(\frac{\zeta}{2}) = \trivial + \frac{1}{2}\cdtheta - \frac{1}{96}\cdtheta \, \theta + \cdots. \label{eq:exp} \end{equation} \subsection{Action of $\alpha_1^{}$} The action of the generator $\alpha_1^{}$ is given by inserting $\exp(\frac{\zeta}{2})$ and multiplying $\eta^{-1} \iota^{(1)}(\check Z(U_-))$. Therefore, the representation matrix of $\widetilde\rho_1^{(1)}(\alpha_1^{})$ with respect to the basis $\Thetazero$ and $\Thetaone$ is given by \begin{equation} % representation matrix of \alpha \widetilde\rho_1^{(1)}( \alpha_1^{}) = -\sqrt{-1} \, (1 + \displaystyle\frac{\theta}{16}) \, \left( \begin{matrix} 1 & 0 \\\\ \dfrac{1}{2} - \dfrac{1}{96}\theta & 1 - \dfrac{1}{24}\theta \end{matrix} \right) . \end{equation} \subsection{Action of $\beta_1^{}$} The action of $\beta_1^{}$ is to apply $\Delta$, insert $\nu \, \exp(-\frac{\zeta}{2})$ and apply $\iota^{(1)}$ to the newly added component, and then multiply by $\eta^{-1}$. Modulo $P_2$ relation, we have \begin{multline} % nuexp \nu \, \exp(-\frac{\zeta}{2}) = (\trivial - \dfrac{1}{96}\cdtheta \, \theta + \cdots) \, (\trivial - \frac{1}{2}\cdtheta - \frac{1}{96}\cdtheta \, \theta + \cdots) \\ = \trivial - \frac{1}{2}\cdtheta - \frac{1}{48}\cdtheta \, \theta + \cdots. \qquad\qquad\qquad\qquad \qquad\qquad\qquad\qquad \label{eq:nuexp} \end{multline} Hence, we have \begin{equation} \widetilde\rho_1^{(1)}( \beta_1^{}) = -\sqrt{-1} \, \left( \begin{matrix} 1 + \dfrac{1}{24} \theta & -2 - \dfrac{1}{12} \theta \\\\ 0 & 1 + \dfrac{1}{24} \theta \end{matrix} \right). \end{equation} \section{Perturbative representation of genus two and degree one} \subsection{Preparation} \par % generators The space $\cA^{(1)}(\Gamma_2)$ is spanned by the following 5 chord diagrams $C_1$, $C_2$, $C_3$, $C_4$, $C_5$ in Figure~\ref{fig:generators} as a $\cA^{(1)}(\phi)$-module. \begin{figure}[htb] \begin{center} $ \begin{matrix} \gammatwo \\\\ C_1 \end{matrix} , \quad \begin{matrix} \gammatwofirst \\\\ C_2 \end{matrix} , \quad \begin{matrix} \gammatwosecond \\\\ C_3 \end{matrix} $, $\begin{matrix} \gammatwoboth \\\\ C_4 \end{matrix} , \quad \begin{matrix} \gammatwobridge \\\\ C_5 \end{matrix} $ \caption{Generators of $\cA^{(1)}(\Gamma_2)$} \label{fig:gammatwogenerators} \end{center} \end{figure} \par % Formulas We prepare some formulas modulo the $P_2$ relation. First, we have \begin{equation} \cdbridgetwo = -\dfrac{1}{2} \, \cdtheta \, \cdtheta - \dfrac{1}{8} \, \cdbridge\, \theta. \end{equation} From this formula, we get \begin{equation} \cdbridgethree = \dfrac{1}{16} \, \cdtheta \, \cdtheta \, \theta. \end{equation} For $\exp(\zeta/2)$, we have \begin{multline} \Delta(\exp(\frac{\zeta}{2})) = \trivial \, \trivial + \dfrac{1}{2} \, \left( \cdtheta \, \trivial + 2\, \cdbridge + \trivial \, \cdtheta \right) - \\ \dfrac{1}{96} \, \left( \cdtheta \, \trivial + 2\, \cdbridge + \trivial \, \cdtheta \right)\, \theta + \dfrac{1}{96} \, \cdtheta \, \cdtheta \, \theta + \cdots. \qquad\qquad \label{eq:deltaexp} \end{multline} We know that \begin{equation} \Phi = \trivial \, \trivial \, \trivial + \dfrac{1}{24}\, \cdbranch + \cdots. \end{equation} Moreover, we have \begin{equation} \cdbridgetwo = -\dfrac{1}{2} \, \cdtheta\, \cdtheta - \dfrac{1}{4} \, \cdbridge \, \theta. \end{equation} \subsection{Action of $\alpha_1^{}$} As in the genus one case, the action of $\alpha_1^{}$ is to insert $\exp(\dfrac{\zeta}{2})$ to the edge $\varepsilon_1^{}$ and then multiply by $\eta^{-1} \iota^{(1)}(\check Z(U_-))$. We have $$\begin{array}{rclrcl} \exp(\dfrac{\zeta}{2}) \, C_1 &=& C_1 + \left( \dfrac{1}{2} - \dfrac{\theta}{96} \right) \, C_2, & \exp(\dfrac{\zeta}{2}) \, C_2 &=& \left( 1 - \dfrac{\theta}{24} \right) \, C_2, \\\\ \exp(\dfrac{\zeta}{2}) \, C_3 &=& C_3 + \left( \dfrac{1}{2} - \dfrac{\theta}{96} \right) \, C_4, & \exp(\dfrac{\zeta}{2}) \, C_4 &=& \left( 1 - \dfrac{\theta}{24} \right) \, C_4, \\\\ \exp(\dfrac{\zeta}{2}) \, C_5 &=& \left( 1 - \dfrac{\theta}{24} \right) \, C_5. \end{array} $$ Hence the representation matrix of $\alpha_1^{}$ with respect to the basis in Figure~\ref{fig:gammatwogenerators} is given by \begin{equation} \widetilde\rho_2^{(1)}(\alpha_1^{}) = -\sqrt{-1} \, (1 + \displaystyle\frac{\theta}{16}) \, \left( \begin{matrix} 1 & 0 & 0 & 0 & 0 \\\\ \dfrac{1}{2} - \dfrac{\theta}{96} & 1 - \dfrac{\theta}{24} & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 & 0 \\\\ 0 & 0 & \dfrac{1}{2} - \dfrac{\theta}{96} & 1 - \dfrac{\theta}{24} & 0 \\\\ 0 & 0 & 0 & 0 & 1 - \dfrac{\theta}{24} \end{matrix} \right). \end{equation} \subsection{Action of $\alpha_2^{}$} The action of $\alpha_2^{}$ is to insert $\Delta(\exp(\dfrac{\zeta}{2}))$ to the edges $\varepsilon_1^{}$ and $\varepsilon_3^{}$ just below $\varepsilon_2^{}$ and multiply $\eta^{-1} \iota^{(1)}(\check Z(U_-))$. By using (\ref{eq:deltaexp}), insertion of $\Delta(\exp(\dfrac{\zeta}{2}))$ to each generator is given as follows. \begin{align*} \Delta(\exp(\dfrac{\zeta}{2})) \, &C_1 = C_1 + \left( \dfrac{1}{2} - \dfrac{\theta}{96} \right) \, C_2 + \left( \dfrac{1}{2} - \dfrac{\theta}{96} \right) \, C_3 + \left( -1 + \dfrac{\theta}{48} \right) \, C_5, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_2 = \left( 1 - \dfrac{\theta}{24} \right) \, C_2 + \left(\dfrac{1}{2} -\dfrac{\theta}{96} \right) \, C_4 + \dfrac{\theta}{12}\, C_5, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_3 = \left( 1 - \dfrac{\theta}{24} \right) \, C_3 + \left(\dfrac{1}{2} -\dfrac{\theta}{96} \right) \, C_4 + \dfrac{\theta}{12} C_5, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_4 = \left( 1 - \dfrac{\theta}{12} \right) \, C_4, \\\\ \Delta(\exp(\dfrac{\zeta}{2})) \, &C_5 = \left( -\dfrac{1}{2}-\dfrac{\theta}{96}\, \right) \, C_4 + \left( 1 + \dfrac{\theta}{24} \right) \, C_5. \end{align*} Hence, the representation matrix of $\alpha_2^{}$ is given by \begin{equation} \widetilde\rho_2^{(1)}(\alpha_2^{}) = -\sqrt{-1} \, (1 + \displaystyle\frac{\theta}{16}) \, \left( \begin{matrix} 1 & 0 & 0 & 0 & 0 \\\\ \dfrac{1}{2} - \dfrac{\theta}{96}& 1 - \dfrac{\theta}{24}& 0 & 0 & 0 \\\\ \dfrac{1}{2} - \dfrac{\theta}{96} & 0 & 1 - \dfrac{\theta}{24}\, & 0 & 0 \\\\ 0 & \dfrac{1}{2} - \dfrac{\theta}{96} & \dfrac{1}{2} - \dfrac{\theta}{96} & 1 - \dfrac{\theta}{12} & \dfrac{1}{2} - \dfrac{\theta}{96} \\\\ -1 + \dfrac{\theta}{48} & \dfrac{\theta}{12} & \dfrac{\theta}{12} & 0 & 1 + \dfrac{\theta}{24} \end{matrix} \right). \end{equation} \subsection{Action of $\beta_i^{}$} The action of $\beta_1^{}$ is to make parallel of $\varepsilon_1^{}$, insert the associator $\Phi$, $\exp(-\dfrac{\zeta}{2})$ and $\nu$ as indicated in Figure~\ref{fig:xi}, apply $\iota^{(1)}$ to the newly added component, and then multiply $\eta^{-1}$. The action of $\Delta_{\varepsilon_1^{}}$, $\Phi$, $\exp(-\dfrac{\zeta}{2})$, $\nu$ and $\iota^{(1)}$ is given as follows. \begin{align*} \iota^{(1)}\, \nu \, \exp(-\dfrac{\zeta}{2}) \, &\Phi\, \Delta_{\varepsilon_1^{}} \, C_1 = \left( 1 + \dfrac{1}{24} \, \theta \right) \, C_1, \\\\ \iota^{(1)}\, \nu \, \exp(-\dfrac{\zeta}{2}) \, &\Phi\, \Delta_{\varepsilon_1^{}} \, C_2 = \left( -2 - \dfrac{\theta}{12} \right) \, C_1 + \left( 1 + \dfrac{\theta}{24} \right) \, C_2 - \dfrac{\theta}{24} \, C_5, \\\\ \iota^{(1)}\, \nu \, \exp(-\dfrac{\zeta}{2}) \, &\Phi\, \Delta_{\varepsilon_1^{}} \, C_3 = \left( 1 + \dfrac{1}{24}\, \theta \right) \, C_3, \\\\ \iota^{(1)}\, \nu \, \exp(-\dfrac{\zeta}{2}) \, &\Phi\, \Delta_{\varepsilon_1^{}} \, C_4 = \left( -2 - \dfrac{1}{12} \, \theta \right) \, C_3 + \left( 1 + \dfrac{1}{24}\, \theta \right) \, C_4, \\\\ \iota^{(1)}\, \nu \, \exp(-\dfrac{\zeta}{2}) \, &\Phi\, \Delta_{\varepsilon_1^{}} \, C_5 = \left( 1 + \dfrac{1}{48}\, \theta \right) \, C_5. \end{align*} Hence, the representation matrix of $\beta_1^{}$ is given by \begin{equation} \widetilde\rho_2^{(1)}(\beta_1^{}) = -\sqrt{-1} \, \left( \begin{matrix} 1 + \dfrac{\theta}{24} & -2 - \dfrac{\theta}{12} & 0 & 0 & 0 \\\\ 0 & 1 + \dfrac{\theta}{24} & 0 & 0 & 0 \\\\ 0 & 0 & 1 + \dfrac{\theta}{24} & -2 - \dfrac{\theta}{12} & 0 \\\\ 0 & 0 & 0 & 1 + \dfrac{\theta}{24} & 0 \\\\ 0 & - \dfrac{\theta}{24} & 0 & 0 & 1 + \dfrac{\theta}{48} \end{matrix} \right). \end{equation} Similarly, the representation matrix of $\beta_2^{}$ is given by \begin{equation} \widetilde\rho_2^{(1)}(\beta_2^{}) = -\sqrt{-1} \, \left( \begin{matrix} 1 + \dfrac{\theta}{24} & 0 & -2 - \dfrac{\theta}{12} & 0 & 0 \\\\ 0 & 1 + \dfrac{\theta}{24} & 0 & -2 - \dfrac{\theta}{12} & 0 \\\\ 0 & 0 & 1 + \dfrac{\theta}{24} & 0 & 0 \\\\ 0 & 0 & 0 & 1 + \dfrac{\theta}{24} & 0 \\\\ 0 & 0 & - \dfrac{\theta}{24} & 0 & 1 + \dfrac{\theta}{48} \end{matrix} \right). \end{equation} \subsection{Action of $\delta$} As the action of $\alpha_1^{}$, the action of $\delta$ is to insert $\exp(\dfrac{\zeta}{2})$ to the edge $\varepsilon_3^{}$ and then multiply $\eta^{-1} \iota^{(1)}(\check Z(U_-))$. Hence the representation matrix of $\delta$ is given by \begin{equation} \widetilde\rho_2^{(1)}(\delta) = -\sqrt{-1} \, (1 + \displaystyle\frac{\theta}{16}) \, \left( \begin{matrix} 1 & 0 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 & 0 \\\\ \dfrac{1}{2} - \dfrac{\theta}{96} & 0 & 1 - \dfrac{\theta}{24} & 0 & 0 \\\\ 0 & \dfrac{1}{2} - \dfrac{\theta}{96} & 0 & 1 - \dfrac{\theta}{24} & 0 \\\\ 0 & 0 & 0 & 0 & 1 - \dfrac{\theta}{24} \end{matrix} \right). \end{equation} \subsection{Jones representation} A 5-dimensional representation of $\widetilde\cM_2$ is also given in \cite{J}. We denote this representation by $\pi$. Then the representation matrices of $\pi$ is given as follows. \begin{align*} \pi(\alpha_1^{}) &= \left( \begin{matrix} -1 & 0 & 0 & 0 & q \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & q & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & q \end{matrix} \right), \qquad \pi(\beta_1^{}) = \left( \begin{matrix} -1 & 0 & 0 & q & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & q & 0 & 0 \\ 0 & 0 & 0 & q & 0 \\ 0 & 0 & 1 & 0 & -1 \end{matrix} \right), \\ \pi(\alpha_2^{}) &= \left( \begin{matrix} q & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & q \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & q \end{matrix} \right), \qquad \pi(\beta_2^{}) = \left( \begin{matrix} -1 & q & 0 & 0 & q \\ 0 & q & 0 & 0 & 0 \\ 0 & 0 & q & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{matrix} \right), \\ \pi(\delta) &= \left( \begin{matrix} -1 & 0 & 0 & 0 & q \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & q & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & q \end{matrix} \right). \end{align*} The representation $\widetilde\rho_2^{(1)}$ at $\theta=0$ is equivalent to $\sqrt{-1} \, \pi$ at $q = -1$. The equivalence is given by the following base change. \begin{equation} (C_1, C_2, C_3, C_4, C_5) \longrightarrow (-\dfrac{1}{2} \, C_4, -C_2 + C_5, 2 \, C_1, C_5, -C_3 - C_5). \end{equation} \subsection{Restriction to the Torelli subgroup} The Torelli subgroup of $\cM_2$ is generated by $t = (\alpha_1^{} \beta_1^{} \alpha_1^{})^4$. The representation matrix of $t$ is the following. \begin{equation} \widetilde\rho_2^{(1)}(t) = \left(\begin{matrix} 1 + \dfrac{\theta}{2} & 0 & 0 & 0 & 0 \\\\ 0 & 1 + \dfrac{\theta}{2} & 0 & 0 & 0 \\\\ 0 & 0 & 1 + \dfrac{\theta}{2} & 0 & 0 \\\\ 0 & 0 & 0 & 1 + \dfrac{\theta}{2} & 0 \\\\ 0 & 0 & 0 & 0 & 1 + \dfrac{\theta}{4} \end{matrix}\right). \end{equation} This matrix is not a scalar matrix and so the representation matrix $\rho_2^{(1)}(t)$ is not the identity matrix. Hence, we have the following. \begin{prop} The restriction of the representation $\rho_2^{(1)}$ to the Torelli subgroup of $\cM_2$ is a non-trivial representation. \end{prop} \begin{thebibliography}{99} \baselineskip15pt \bibitem{B} % BarNatan D.~Bar-Natan, {\it On the Vassiliev knot invariants}, Topoloby {\bf 34} (1995), 423--472. \bibitem{H} % Humphries S.~Humphries, {\it Generators for the mapping class group}, in {\it Topology of Low-dimensional Manifolds}, Lecture Notes in Mathematics {\bf 722}, Springer, Berlin, 1979, pp. 44--47. \bibitem{J} % Jones V.~F.~R.~Jones, {\it Hecke algebra representations of braid groups and link polynomials}, Ann. Math., {\bf 126} (1987), 335-388. \bibitem{K} % Kontsevich M.~Kontsevich, {\it Vassiliev's knot invariants}, Advances in Soviet Mathematics, {\bf16} (1993), 137--150. \bibitem{LMO} % Univ. Invariant T.~T.~Q.~Le, J.~Murakami and T.~Ohtsuki, {\it On a universal perturbative invariant of 3-manifolds}, submitted to Topology. \bibitem{M} % torus J.~Murakami, {\it The Casson invariant for a knot in a 3-manifold}, in {\it Geometry and Physics} (Ed. Anderson, Dupont, Pedersen and Swan), Marcel Dekker, New York, 1996, pp. 459--469. \bibitem{MO} % TQFT J.~Murakami and T.~Ohtsuki, {\it Topological quantum field theory for the universal quantum invariant}, preprint. \bibitem{W} % Wajnryb B.~Wajnryb, {\it A simple relation for the mapping class group of an orientable surface}, Israel J. Math. {\bf 45} (1983), 157--174. \end{thebibliography} \end{document}