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Introduction

The notion of finite-type invariants was introduced by Gusarov [2]

and then appeared in the work of Vassiliev [8] concerning to certain 0-

homology of the space of knots approimated by polynomial mappings.

Kontsevich [3] gives a universal description for all the finite-type in-

variants by using chord diagrams and iterated integral.

In this paper, we show that there is no finite-type invariant of degree

less than 11 which distinguishes mutant knots. A finite-type invariant

of degree 11 which can distinguish some mutant knots is constructed as

follows. Let QK(q) be the quantum invariant of a knot K corresponding

to the representation of the partition (2,1) of the quantum enveloping

algebra Uq(sl4). Let KC be the Conway’s 11-crossing knot, KKT be the

Kinoshita-Terasaka knot, and © be the trivial knot. Then, by using

the computer software “KnotTheoryByComputer” by M. Ochiai [7],

we have

QKC
(q)−QKKT

(q)

Q©(q)
=

q8
(
1 + q4

) (−1 + q2
)6 (−1 + q6

)2 (−1 + q12
) (−1 + q28

)2
.

This is divisible by (q − 1)11 and is not divisible by (q − 1)12. This

means that there is a finite-type invariant of degree actually 11 which

has different values for KC and KKT .
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Kinoshita-Terasaka knot KKT Conway’s 11 crossing knot KC

Figure 1. Kinoshita-Terasaka knot and Conway’s 11
crossing knot

The aim of this paper is to show that all the finite-type invariants of

degree less than or equal to 10 cannot distinguish mutant knots. This

fact is shown by using the Kontsevich invariant and by investigating

the symmetry of web diagrams corresponding to 2-tangles.

1. Finite-type invariants of 2-tangles

1.1. Web diagrams. Let I be an oriented 1-manifold. A web diagram

W on I is a uni-trivalent graph whose univalent vertices are attached

to I and edges attached to a trivalent vertex are cyclically ordered as

in Figure 2. In the diagram, I is denoted by solid lines and the graph

is denoted by dashed lines. The total degree of a web diagram W is

?
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Figure 2. An example of a web diagram

the number of all vertices of W , which is an even number. The inner

degree of W is the number of the trivalent vertices of W . Let W(I)

be the spaces of web diagrams on I subjected to the STU relation and

the IHX relation as in Figure 3.

W(I) = C{web diagram on I}/STU, IHX.
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STU relation

-

=

-

-

-

IHX relation = -

Figure 3. STU and IHX relation

These relations are homogeneous with respect to the total degree and

so W(I) is graded by the total degree. The STU relation is not ho-

mogeneous with respect to the inner degree and there is a filtration

of W(I) coming from the inner degree. Let W(t)(I) denote the sub-

space of W(I) spanned by the web diagrams of the total degree t, and

W(t,i)(I) denote the subspace of W(I) spanned by the web diagrams

of the total degree t and the inner degree greater than or equal to i.

1.2. Symmetrized web diagrams. Let I be an oriented 1-manifold

consist of connected components I1, I2, · · · , Ik. Let W be a web

diagram on I and let p
(l)
1 , p

(l)
2 , · · · , p

(l)
ql

be the univalent vertices of W

attached to the l-th component Il. Let Sn denote the symmetric group

of n letters. For σ ∈ Sq1
× · · · × Sqk

, let σ W be the web diagram on I

whose univalent vertices are exchanged according to σ. Let

W S =
1

q1! q2! · · · qk!

∑
σ∈Sq1

×···×Sq
k

σ W,

and we call W S the symmetrized web diagram of W .

Let

WS(I) = {W S | W ∈ W(I)},
and we call WS(I) the space of symmetrized web diagrams. We repre-

sent W S by the graph of W whose univalent vertex is labeled accoeding

to the attached component of I. For example, let W be the web dia-

gram given in Figure 2, then W S is expressed as in FIgure 4.

Proposition. WS(I) = W(I).
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Figure 4. An example of a symmetrized web diagram

The proof of this proposition is similar to the proof of Theorem 8 in

[1], and we omit it.

1.3. Primitive diagrams. The coproduct ∆ of W(I) is a linear map-

ping fromW(I) toW(I)⊗W(I) distributing the connected component

of the graph of a web diagram as in [1]. An element x of W(I) is called

primitive if

∆(x) = x⊗ 1 + 1⊗ x.

Let W be a web diagram on I which is primitive in W(I), then the

graph of W is connected and the symmetrized diagram W S is also

primitive.

Let I(n) be a union of intervals and we define a multiplication of

elements of W(I(n)) by connecting corresponding intervals. For two

web diabrams W1, W2 in W(I(n)), we define symmetrized product W1 ∗
W2 by

W1 ∗W2 = (W1 W2)
S.

This definition implies that

W1
S ∗W2

S = (W1 W2)
S.

This symmetrized product is commutative and so W(I(n)) has a com-

mutative algebra structure with this product. As in the case of web

diagrams on S1 discussed in [1], we have the following.

Proposition. W(I(n)) is isomorphic to the symmetric tensor algebra

of W(I(n))prim, where W(I(n))prim is the subspace of W(I(n)) spanned

by the primitive elements.

Moreover, we have the following.
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Proposition. Let Ẑf (T ) be the Kontsevich invariant of a framed

n-tangle T [5]. Then Ẑf (T ) is a group-like element i.e.

∆(Ẑf (T )) = Ẑf (T )⊗ Ẑf (T ),

and there is x ∈ W(I(n))prim such that

Ẑf (T ) = exp(x) = 1 + x +
x ∗ x

2!
+

x ∗ x ∗ x

3!
+ · · · .

1.4. Generators. We give a generator set of W(2t)(I(2))prim. Here we

use that W(2t)(I(2))prim is spanned by symmetrized diagrams.

t = 0 The space W(0)(I(2))prim is spanned by the empty graph φ.

t = 1 The space W(2)(I(2))prim is spanned by 3 elements. These are

all consists of a single line and the endpoints of the line are

labeled by (1,1), (1,2), (2,2) respectively.

1 1 1 2 2 2

Figure 5. Generators of W(1)(I(2))prim

t = 2 The space W(4)(I(2))prim is spanned by the 3 elements in Fig-

ure 6.

1 1 1 2 2 2

Figure 6. Generators of W(2)(I(2))prim

t = 3 The space W(6)(I(2))prim is spanned by the 4 elements in Fig-

ure 7.

t = 4 The space W(8)(I(2))prim is spanned by the 9 elements in Fig-

ure 8.

t = 5 The space W(10)(I(2))prim is spanned by the 10 elements in Fig-

ure 9.

We can show the above by using the following relations coming from

the STU and the IHX relations.
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i j (i, j) = (1, 1), (1, 2), (2, 2),

1

1

2

2

Figure 7. Generators of W(6)(I(2))prim

i j (i, j) = (1, 1), (1, 2), (2, 2),

i

i

j

k

(i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2),

1

1

2

2

Figure 8. Generators of W(8)(I(2))prim

Lemma. In W(I), symmetrized diagrams satisfy the relations in

Figure 10.

2. Symmetry of web diagrams

For a web diagram W in W(I(2)), let f(W ) denote the flipped dia-

gram of W exchanging the two lines of I(2). For example, f(P1) = P2.

Lemma. For the symmetrized web diagram W S, we have

f(W S) = f(W )S
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i j

(i, j) = (1, 1), (1, 2), (2, 2),

i

i

j

k

(i, j, k) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2),

1

1

2

2
,

P1 =

1

1

1

2

2

, P2 =

1

1

2

2

2 .

Figure 9. Generators of W(10)(I(2))prim

i

i

= 0,

= = = 2 .

Figure 10. Relations among web diagrams

Proposition. Let x be one of generators of W(2t)(I(2)) given in the

previous section, which is not equal to P1 nor P2. Then x satisfies

f(x) = x.

The generator P1 and P2 satisfies

f(P1 + P2) = P1 + P2, f(P1 − P2) = −(P1 − P2).



8

Proof. Let x be one of the generators other than P1, P2, x = f(x)

because the shape of x and the lemma in the previous section. For P1

and P2, we have f(P1) = P2 and f(P2) = P1. ¤

3. Mutation

Let K be a knot consisting of two 2-tangles T1 and T2. Then the

Kontsevich invariant Ẑf (K) of K is a composition of the Kontsevich

invariants Ẑf (T1) and Ẑf (T2) of T1 and T2 as the knot K is con-

structed from T1 and T2 as in Figure 11. We denote this composition

Ẑf (T1) \ Ẑf (T2) =

& %& %

Ẑf (T2)

Ẑf (T1)

? ?

¾»¾»

Figure 11. Composition of the Kontsevich invariant of tangles

by Ẑf (T1) \ Ẑf (T2) and so

Ẑf (K) = Ẑf (T1) \ Ẑf (T2).

Let f(T1) denote the flipped tangle as in Figure 12 and let K ′ be the

knot constructed by f(T1) and T2. These two knots K and K ′ are

called mutant.

Figure 11 implies the following.

Lemma. We have

Ẑf (K)− Ẑf (K
′) =

(
Ẑf (T1)− f(Ẑf (T1))

)
\ Ẑf (T2)

= Ẑf (T1) \
(
Ẑf (T2)− f(Ẑf (T2))

)
.
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f(T1)

K K ′

Figure 12. Flip the tangle T1

Let Ẑ
(d)
f denote the degree d part of the Kontsevich invariant. Then

the above lemma and the previous proposition imply the following.

Lemma. Let T be a 2-tangle. Then, for d ≤ 4,

Ẑ
(d)
f (T )− f(Ẑ

(d)
f (T )) = 0.

If d ≤ 9, then each term of Ẑ
(d)
f (K)−Ẑ

(d)
f (K ′) is a composition of terms

of Ẑ
(d1)
f (T1) or f(Ẑ

(d1)
f (T1)), and, Ẑ

(d2)
f (T2) or f(Ẑ

(d2)
f (T2)), where one

of d1 and d2 is less than or equal to 4. Therefore, the above lemma and

the previous proposition imply the following.

Proposition. Ẑ
(d)
f (K)− Ẑ

(d)
f (K ′) = 0 if d ≤ 9.

Next, we consider about the degree 10 part. The web diagram we have

to consider is the non-symmetric generators P1 and P2. From Figure

11, we have

P1 \ P1 = P1 \ P2 = P2 \ P2 = P2 \ P1.

Let

Ẑ
(5)
f (T1) = c1 (P1 − P2) + symmetric part,

Ẑ
(5)
f (T2) = c2 (P1 − P2) + symmetric part.

Then, we have

Ẑ
(10)
f (K)− Ẑ

(10)
f (K ′) = 2 c1 c2 (P1 − P2) \ (P1 − P2) = 0.

Hence the following theorem holds.
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Theorem. For d ≤ 10,

Ẑ
(d)
f (K)− Ẑ

(d)
f (K ′) = 0.

References

[1] D. Bar-Natan: On the Vassiliev knot invariants, Topology 34

(1995), 423–472.

[2] M. Gusarov: On n-equivalence of knots and invariants of finite

degree, Advances in Soviet Math. 18 (1994), 173–192.

[3] M. Kontsevich: Vassiliev’s knot invariants, in ‘Collection:

I. M. Gelfand Seminar’, Adv. Soviet Math. 16, Part 2, Amer. Math.

Soc., Providence, RI, 1993, pp. 137–150.

[4] T. Q. T. Le and J. Murakami: Kontsevich’s integral for the HOM-

FLY polynomial and relations between values of multiple zeta func-

tions, Topology Appl. 62 (1995), 193-206.

[5] T. Q. T. Le and J. Murakami: Representations of the category of

tangles by Kontsevich’s iterated integral, Comm. Math. Phys. 168

(1995), 535–562.

[6] T. Q. T. Le, J. Murakami and T. Ohtsuki: On the universal per-

turbative invariant of 3-manifolds, Topology 37 (1998), 539–574.

[7] M. Ochiai: Knottheory by Computer,

ftp://ftp.ics.nara-wu.ac.jp/pub/ochiai/

[8] V. A. Vassiliev: Cohomology of knot spaces, Theory of singularities

and its Applications (Providence)(V. I. Arnold, ed.), Amer. Math.

Soc., Providence (1990).


