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Introduction

For several hyperbolic knots, a relation between certain quantum invariants
and the volume of their complements are discovered by R. Kashaev in [2].
In [6], it is shown that Kashaev’s invariants are specializations of the colored
Jones polynomials. Kashaev used the saddle point method to obtain certain
limit of invariants, and Y. Yokota proved that the equations to determine the
saddle points correspond to the equations defining the hyperbolic structure of
the knot complement. He introduce a simplicial decomposition of the com-
plement associated to a knot diagram, and show that the equations to give
the hyperbolic structure of each simplex coincide with the equations for saddle
points. For 3-manifolds obtained by surgeries along a figure-eight knot, H. Mu-
rakami [5] follows Kashaev’s computation for the Witten-Reshetikhin-Turaev
invariants and found that a value at certain saddle point relates to the volume.

Trying to extend these works to the Turaev-Viro invariant [9], a formula for
the volume of a hyperbolic tetrahedron is obtained in [7]. The Turaev-Viro
invariant is defined from a simplicial decomposition of a 3-manifold, and use
a state sum associating the quantum 6j-symbol to each tetrahedron, and the
formula for the volume of a hyperbolic tetrahedron comes from the quantum
6j-symbols. Moreover, extending Yokota’s theory to this case, we may get some
relation between the volume and the geometric structure of the manifold, which
is the main subject of this note.

1. Fluctuating structure

In this report, I would like to speculate a method to determine the geometric
structure of a 3-manifold from its simplicial decomposition by using a gener-
alized volume function, which is called a potential function in [12]. To define
the generalized volume, we introduce a fluctuating structure of a simplicial
decomposition.

1.1. Fluctuating simplicial decomposition. Let T be a simplicial decom-
position of a 3-manifold M . Assume that T consists of k 3-simplices T1, T2, · · · ,
Tk. Each 3-simplex has 6 corners corresponding to its two faces (2-simplices),
and we associate real numbers to each corners, say θi

1, θ2, · · · , θi
6 for the 3-

simplex Ti. These numbers are called the dihedral angles of the corners. Let
Θ be the correction of the dihedral angles

Θ = {θi
j | i = 1, 2, · · · , k, j = 1, 2, · · · , 6}.
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Let E be an edge (1-simplex) of T , Ti1
, Ti2

, · · · , Ti�
be the tetrahedra containing

the edge E, and θ
i1
j1

, θ
i2
j2

, · · · , θ
i�
j�

be the dihedral angles of the corners of Ti1
,

Ti2
, · · · , Ti�

corresponding to E. Then the following relation is called the angle
relation corresponding to E.

angle relation:
�∑

p=1

θ
ip
jp

= 2 π. (1)

The correction of the dihedral angles Θ is called a fluctuating structure of T
if the angles of Θ satisfy the edge relations for all the edges of T . A simplicial
decomposition with a fluctuating structure Θ is denoted by TΘ and is called a
fluctuating simplicial decomposition.

1.2. Generalized volume. The generalized volume is introduced to a fluctu-
ating simplicial decomposition TΘ. This is denoted by V(TΘ) and it is defined
as a sum of generalized volumes of each fluctuating 3-simplex, i.e.

V(TΘ) =
∑

T∈T 3

V(TΘ), (2)

where T 3 be the set of 3-simplices of T and TΘ means the fluctuating 3-simplex
T with the fluctuating structure given by the restriction of Θ to T , in other
words, the six corners of T are assigned dihedral angles given by Θ.

The generalized volume V for a fluctuating 3-simplex TΘ is defined by the
following formula. Let A, B, C be the three angles touching the same vertex of
T , and D, E, F be the angles of T at the opposite position of A, B, C respec-
tively as in Figure 1. Let a = exp

√
−1θ1, b = exp

√
−1θ2, · · · f = exp

√
−1θ6,
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Figure 1. The six dihedral angles A, B, · · · , F of T .

and Li2(z) be the dilogarithm function defined as an analytic continuation of
the following function.

Li2(x) = −
∫ x

0

log(1 − x)

x
dx =

∞∑
k=1

xk

k2
. (3)
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For the detail of Li2, see, for example, [4]. Note that the dilogarithm Li2(z) is
a multi-valued function as the logarithm function log(z). We put

U(z, T ) =
1

2
(Li2(z) + Li2(z a b d e) + Li2(z a c d f) + Li2(z b c e f)

−Li2(−z a b c) − Li2(−z a e f) − Li2(−z b d f) − Li2(−z c d e)) .
(4)

Let z1, z2 be the two non-trivial solutions of the equation

d

dz
U(z, T ) =

2 π k

z
, (k ∈ Z) (5)

which is equivalent to

(1 − z) (1 − a b d e z) (1 − a c d f z) (1 − b c e f z)

− (1 + a b c z) (1 + a e f z) (1 + b d f z) (1 + c d e z) = 0.
(6)

Note that a solution of (6) may be a solution of (5) in some branch because
the function log is a multi-valued function. In the following formulas, we take
an adequate branch of logarithm and dilogarithm functions corresponding to
the solutions z1 and z2. Let k1 and k2 be the integers satisfying the following.

d

dz
U(z1, T ) =

2 π k1

z1

,
d

dz
U(z2, T ) =

2 π k2

z2

.

By using z1 and z2, let

V(TΘ) =
1

2
(U(z1, TΘ) − U(z2, TΘ) − k1 log z1 + k2 log z2) . (7)

It is known in [7] that |
√
−1V(TΘ)| is equal to the actual volume of TΘ if TΘ

is realized as a hyperbolic tetrahedron,

Volume(TΘ), = |
√
−1V(TΘ)| (8)

and |V(TΘ)| is equal to the actual volume of TΘ if TΘ is realized as a tetrahedron
in S3,

Volume(TΘ). = |V(TΘ)| (9)

This formula is proved by comparing with the formula given in [1]. Let z1

be a solution of (6) such that z1 goes to 1 if we deform TΘ continuously to a
tetrahedron with a ideal vertex. For this case, −

√
−1V(TΘ) is positive and we

have

Volume(TΘ). = −
√
−1V(TΘ) (10)

for a hyperbolic tetrahedron TΘ.

1.3. Some special cases. First consider the case that the angles A, B, C
satisfy

A + B + C = π.

Hence a b c = −1 and so the equation (6) is the following.

(1 − z) (1 − a b d e z) (1 − a c d f z) (1 − b c e f z)

− (1 − z) (1 + a e f z) (1 + b d f z) (1 + c d e z) = 0.
(11)
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Therefore z = 1 is one of the solution of (6). This implies that, if one of the
vertex of the tetrahedron is an idal vertex, then z = 1 is one of the non-trivial
solutions of (6).

Next, consider the case that

A = 0, B + C = π, E + F = π.

This tetrahedron is degenerated to a face since A = 0. The parameters a, · · · ,
f satisfy a = 1, b c = −1, e f = −1 and the equation (6) is the following.

(1 − z) (1 − b d e z) (1 − a c d f z) (1 − z)

− (1 − z) (1 − z) (1 + b d f z) (1 + c d e z) = 0.
(12)

Hence the non-trivial solutions of (6) are z1 = z2 = 1, which is a multiple root.

1.4. Gram matrix. For a fluctuating 3-simplex TΘ, let Gram(T ) be the Gram
matrix of TΘ defined by

Gram(TΘ) =




1 − cos θ1 − cos θ2 − cos θ6

− cos θ1 1 − cos θ3 − cos θ5

− cos θ2 − cos θ3 −1 − cos θ4

− cos θ6 − cos θ5 − cos θ4 1


 .

The condition of realization of TΘ as a tetrahedron in a hyperbolic space or a
spherical space is known and is given in terms of the elements of Gram(T ).

1.5. Stationary decomposition and geometric decomposition. Let M
be a 3-manifold and let TΘ a simplicial decomposition of M with a fluctuating
structure Θ. A fluctuating decomposition TΘ0 is called a stationary decomposi-
tion if Θ0 is a stationary point of V(Tθ). In other words, the partial derivative
of V(Tθ) with respect to any independent parameters of Θ vanishes.

A fluctuating decomposition TΘ is called a geometric decomposition if all the
faces of T are parts of planes and the dihedral angles given by Θ coincide with
the angle of faces with respect to the hyperbolic structure of M .

1.6. Schläfli’s formula and stationary point of volume. Each tetrahe-
dron T of a geometric decomposition satisfies Schänfli’s formula, which is stated
as follows. Let θ1, θ2, · · · , θ6 be the dihedral angles of T and let E1, E2, · · · ,
E6 be the corresponding edges. Then, for hyperbolic case,

d Volume(T ) = −1

2

6∑
i=1

Length(Ei) dθi. (13)

Hence, by using (7), we have

dV(T ) = −
√
−1

2

6∑
i=1

Length(Ei) dθi. (14)
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Now, we vary the fluctuating structure Θ. Then Schänfli’s formula implies
the following theorem, which is equivalent to the argument to determine the
hyperbolic structure given by Casson.

Theorem 1. If Tθ0 is a geometric decomposition of a hyperbolic 3-manifold
M , then Θ0 is a stationary point of V(TΘ), i.e. V(TΘ) is stable at Θ0.

Proof. We use Lagrange’s multiplier method. The stationary point of V(TΘ)
for the parameter set Θ satisfying the angle relation (1) is given by the solution
of the following set of equations. Let E1, E2, · · · , Ek be the edges of T , and
let θi

1, θi
2, · · · , θi

ji
be the dihedral angles given by Θ around Ei. Then the

equations for a stationary point of V(TΘ) under the edge relations are given
by

∂V(T )

∂θi
1

=
∂V(T )

∂θi
2

= · · · =
∂V(T )

∂θi
ji

= λi (i = 1, 2, · · · , k) (15)

Here λi (i = 1, 2, · · · , k) are some numbers called Lagrange’s multipliers. In
this equation,

∂V(T )

∂θi
p

=
∂V(T i

p)

∂θi
p

,

where T i
p is the tetrahedron containing the dihedral angle θi

p, and so the above
equations are equivalent to the following system of equations.

∂V(T i
p)

∂θi
p

= λi (i = 1, 2, · · · , k, p = 1, 2, · · · , ji) (16)

If θi
p’s are dihedral angles given by Θ0 corresponding to a geometric decompo-

sition, (16) is satisfied by putting

λi = −
√
−1

2
Length(Ei).

from (13). Hence Θ0 correspond to a stationary point of V(TΘ).

Theorem 2. If Tθ0 is a geometric decomposition of a elliptic 3-manifold M ,
i.e. the universal cover of M is isomorphic to S3, then Θ0 is a stationary point
of V(TΘ), i.e. V(TΘ) is stable at Θ0.

Proof. Theorem 2 is proved similarly as for Theorem 1. In this case, the
constant λ = i satisfy

λi =
1

2
Length(Ei).

Remark. The relation (15) means that the length of the edge Ei is equal with
respect to all the tetrahedra with the edge Ei. By this reason, we call (15) the
length relation.
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Definition (generalized length). We call
∂V(T i

p)

∂θi
p

the generalized length of

the edge Ei with respect to the terahedron T i
p. It is a real number if T i

p is a

elliptic tetrahedron, a pure imaginary number if T i
p is a hyperbolic tetrahedron,

and 0 if T i
p is a Euclidean tetrahedron. If the fractuating structure Θ satisfies

the length relation, then the generalized length does not depend on the choice
of the tetrahedron containing Ei.

1.7. Geometric structure of general case. Generalizing Theorem 1, it
may be not so bad to expect the following.

Working hypothesis: Let M be a 3-manifold and T its sim-

plicial decomposition. Then a stationary point of the fluctuating

structure V(TΘ) introduces a geometric structure of M .
　

In other words, a real soltion of the angle relation (1) and the length relation
(15) may give the geometric structure.

2. Examples

In this section, we apply the formula and the working hypothesis to several
examples.

2.1. Regular tetrahedron. The first example is the volume and edge length
of a regular tetrahedron T . Let x be the dihedral angle of T . Then the volume
function behaves as in Figure 2. The value explains the absolute value of
the real part of the volume function if x ≥ arccos 1/3 = 0.391827π and the
absolute value of the imaginary part if x < arccos 1/3. If x = arccos 1/3, then
T is the Euclidean regular tetrahedron, and if x = π/3 then T is the ideal
regular tetrahedron. If x < π/3, then the absolute value of the imaginary part
of the volume function explains the volume of the truncated tetrahedron as
shown in [3]. Expecially, if x = 0, then the truncated tetrahedron is equal to
the ideal octahedron, which is a union of eight tetrahedra with dihedral angles
π/2, π/2, π/2, π/4, π/4 and π/4, whose volume is 0.457983.

2.2. Lens spaces. The lens space Lp,q is known to have a spherical structure,
and so there is a geometric decomposition. Such fluctuating structure is given
by one of the stationary decompositions. A simple geometric decomposition
is given by p tetrahedra of the same shape as in Figure 4 with dihedral angles
A, B, C, D, E, F . Then

A =
2 π

p
, B =

π

2
, C =

π

2
, D =

2 π

p
, E =

π

2
, F =

π

2

satisfy the equation (15).
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3.5
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π
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arccos

1

3
truncated hyperbolic hyperbolic ellipctic

Figure 2. Volume of a regular polyhedron.

0.1 0.2 0.3 0.4 0.5

1

2

3

4

×π
truncated hyperbolic hyperbolic ellipctic

Figure 3. Edge length of a regular polyhedron.

The volume of the tetrahedron with the above dihedral angles are
2 π2

p2
and

the volume of Lp,q is
2 π2

p
. The length of the edges corresponding to A and D
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A
B C

D

EF

Figure 4. Thetrahedral decomposition of a Lens space.

p
0

p
1

Figure 5. The tetrahedron T in the dodecahedron.

is equal to
2 π

p
and that corresponding to B, C, E and F is equal to

π

2
. The

above volume and lengths can be obtained by using the formula V(T ).

2.3. Poincarè homology sphere. In the book of Thurston [8], examples of
two 3-manifolds obtained by glueing the faces of a dodecahedron are given.
One has a spherical structure and the another one has a hyperbolic structure,
and the first one is known to be the Poincarè homology sphere.

For this case, the dihedral angle of the dodecahedron is equal to
2 pi

3
. Let

T be a tetrahedron obtained by subdividing the dodecahedron by using the
center of the dodecahedron p0 and the center of the pentagon p1 as in Figure 5.
Then the dihedral angles of T assigned as in Figure 10 are given as follows.

A =
2 π

5
, B =

π

3
, C =

π

3
, D =

π

3
, E =

π

2
, F =

π

2
.

The volume of T is equal to
π2

3600
. Recall that the volume of S3 is equal to 2 π2,

the Poincarè homology sphere is the quotient of S3 by a finite group of order
120 (the binary icosahedral group), and the volume of the dodecahedron is 60
times the volume of T . The lengths of the edges corresponding to A, · · · , F

are 0.086236π, 0.123549π, 0.123549π,
π

10
, 0.123549π, 0.123549π respectively.
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Figure 6. The angles of T .

These results suggest that the distances of the vertex v of the dodecahedron
from p0 and p1 are equal.

2.4. Seifert-Weber dodecahedral space. A hyperbolic 3-manifold is ob-
tained by glueing the faces of a dodecahedron and it is called the Seifert-Weber
dodecahedral space. Let T be a tetrahedron as in Figure 5. Then the dihedral
angles of T corresponding to the Seifert-Weber space are given as follows.

A =
2 π

5
, B =

π

3
, C =

π

3
, D =

π

5
, E =

π

2
, F =

π

2
.

Then the volume of T is equal to 0.186651, and so the volume of the Seifert-
Weber space is 11.1991. The lengths of the edges corresponding to A, · · · , F
are 1.99277, 1.43911, 1.43911, 0.996384, 1.90285, 1.90285 respectively. These
results suggest that the length of an edge of the dodecahedron is twice the
length of p0p1.

2.5. 3-dimensional torus. A 3-dimensional torus has a simplicial decompo-
sition with six tetrahedra as in Figure 7. Assume that the dihedral angles at
the edges of the cube are all equal to π/2, the right angle, and the length of
the edges are all equal.

Now consider about the three tetrahedra in the triangle cilynder ABC-EFG.
Let T1 be the tetrahedron AEFG, T2 be the tetrahedron ABFG and T3 be the
tetrahedron ABCG. Then the dihedral angles of T1 at the edges AE, AF, AG,
EF, EG, FG are π/4, π/2, π/3, π/2, π/2, π/4 respectively, the dihedral angles
of T2 at the edges AB, AF, AG, BF,BG, FG are π/4, π/2, π/3, π/2, π/2,
π/4 respectively, and the dihedral angles of T3 at the edges AB, AC, AG,
BC, BG, CG are π/4, π/2, π/3, π/2, π/2, π/4 respectively. Such angles are
obtained by solving the equation that the determinant of the Gram matrix of
each tetrahedron is equal to 0.

Remark. Let T1 and T2 be two adjacent Equclidean tetrahedra at an edge E.
Then the generalized length of E with respect to T1 and T2 are both 0 and so
the length relation is always satisfied.
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A B

CD

E F

GH

Figure 7. Decomposition of a cube by six tetrahedra.

2.6. Subdivision of a hyperbolic hexadron. Let A-BCD-E be the hex-
adron H1 given in Figure 8, whose dihedral angles at the edges AB, AC, AD,
BE, CE, DE are all π/2, and those at the edges BC, BD, CD are all 3π/5.
Then H1 is realized in the hyperbolic space. Let T1, T2 be the tetrahedra
ABCD and BCDE. Now obtain the dihedral angles of T1 and T2 at the edges
BC, CD, and BD from the working hypothesis.

A

B

C

D

E

Figure 8. A hexadron with 6 triangle faces.

Let A1, B1, C1 be the dihedral angles at BC, CD, DB of T1 and A2, B2,
C2 be the dihedral angles at BC, CD, DB of T2. Let a1 = exp

√
−1 A1, · · · ,

c2 = exp
√
−1 C2. Then the equations comes from the working hypothesis are

the following.

a1 a2 = b1 b2 = c1 c2 = exp
√
−1 π/3,
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(1 +
√
−1 z a1 b1) (1 +

√
−1 z a1 c1) (1 + z′ a1 b1) (1 + z′ a1 c1) ×

(1 +
√
−1 u′ a2 b2) (1 +

√
−1 u′ a2 c2) (1 + u a2 b2) (1 + u a2 c2) =

(1 +
√
−1 z′ a1 b1) (1 +

√
−1 z′ a1 c1) (1 + z a1 b1) (1 + z a1 c1) ×

(1 +
√
−1 u a2 b2) (1 +

√
−1 u a2 c2) (1 + u′ a2 b2) (1 + u′ a2 c2),

(1 +
√
−1 z a1 b1) (1 +

√
−1 z b1 c1) (1 + z′ a1 b1) (1 + z′ b1 c1) ×

(1 +
√
−1 u′ a2 b2) (1 +

√
−1 u′ b2 c2) (1 + u a2 b2) (1 + u b2 c2) =

(1 +
√
−1 z′ a1 b1) (1 +

√
−1 z′ b1 c1) (1 + z a1 b1) (1 + z b1 c1) ×

(1 +
√
−1 u a2 b2) (1 +

√
−1 u b2 c2) (1 + u′ a2 b2) (1 + u′ b2 c2),

(1 +
√
−1 z a1 c1) (1 +

√
−1 z b1 c1) (1 + z′ a1 c1) (1 + z′ b1 c1) ×

(1 +
√
−1 u′ a2 c2) (1 +

√
−1 u′ b2 c2) (1 + u a2 c2) (1 + u b2 c2) =

(1 +
√
−1 z′ a1 c1) (1 +

√
−1 z′ b1 c1) (1 + z a1 c1) (1 + z b1 c1) ×

(1 +
√
−1 u a2 c2) (1 +

√
−1 u b2 c2) (1 + u′ a2 c2) (1 + u′ b2 c2),

(17)

where z, z′ be the non-trivial solutions of

(1 − z) (1 + z a1 b1) (1 + z a1 c1) (1 + z b1 c1) =

(1 +
√
−1 z a1 b1) (1 +

√
−1 z a1 c1) (1 +

√
−1 z b1 c1) (1 −

√
−1 z), (18)

and u, u′ be the non-trivial solutions of

(1 − u) (1 + u a2 b2) (1 + u a2 c2) (1 + u b2 c2) =

(1 +
√
−1 u a2 b2) (1 +

√
−1 u a2 c2) (1 +

√
−1 u b2 c2) (1 −

√
−1 u). (19)

Then
a1 = b1 = c1 = a2 = b2 = c2 = π/6

satisfies (17). Then the volumes of T1 and T2 are equal to 0.00610257 and the
length of the edges of the hexadron are computed numerically as follows.

AB = AC = AD = BE = CE = DE = 0.481212,

BC = BD = CD = 0.337138.

2.7. Subdivision of an elliptic hexadron. Let A-BCD-E be the hexadron
H1 given in Figure 8, whose dihedral angles at the edges AB, AC, AD, BE,
CE, DE are all π/2, and those at the edges BC, BD, CD are all 2π/3. Then
H1 is realized in S3. Let T1, T2 be the tetrahedra ABCD and BCDE. Then
the dihedral angles corresponding to the edges of BC, BD, CD of T1 and T2

are all equal to π/3. Hence the volumes of T1 and T2 are equal to 0.102808
and the lengths of edges are computed numerically as follows.

AB = AC = AD = BE = CE = DE = 1.0472,

BC = BD = CD = 0.785398.
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2.8. Subdivision of a Euclidean hexadron. Let A-BCD-E be the hexadron
H1 given in Figure 8, whose dihedral angles at the edges AB, AC, AD, BE,
CE, DE are all π/2, and those at the edges BC, BD, CD are all 2 arccos 1/

√
3.

Then H1 is realized in the Euclidean space. Let T1, T2 be the tetrahedra ABCD
and BCDE. Now obtain the dihedral angles of T1 and T2 at the edges BC, CD,
and BD from the working hypothesis.

Let A1, B1, C1 be the dihedral angles at BC, CD, DB of T1 and A2, B2, C2

be the dihedral angles at BC, CD, DB of T2. Let

g1 = g1(A1, B1, C1) = det Gram(T1),

g2 = g2(A2, B2, C2) = det Gram(T2).

Since T1 and T2 should be tetrahedra in the Euclidean space, we should have

g1(A1, B1, C1) = g2(A2, B2, C2) = 0.

The equations corresponding to the edges are all satisfied for such Euclidean
case because the length of the ‘edges’ are all equal to 0. Actual computaion
show that

g1(A1, B1, C1) = 1 − cos2 A1 − cos2 B1 − cos2 C1,

g2(A2, B2, C2) = 1 − cos2 A2 − cos2 B2 − cos2 C2.

Since A1 + A2 = B1 + B2 = C1 + C2 = 2 arccos 1/
√

3,

cos2 A1 + cos2 A2 ≥
2

3
, cos2 B1 + cos2 B2 ≥

2

3
, cos2 C1 + cos2 C2 ≥

2

3
.

The equalities hold for A1 = A2 = B1 = B2 = C1 = C2 = arccos 1/
√

3.
Therefore,

g1(A1, B1, C1) + g2(A2, B2, C2) ≤ 0,

and g1(A1, B1, C1) + g2(A2, B2, C2) = 0 if A1 = A2 = B1 = B2 = C1 = C2 =
arccos 1/

√
3.

Note that the six unknowns are determined from the five relations.
We explain another example of a Euclidean hexadron. Let A-BCD-E be the

hexadron H2 given in Figure 8, whose dihedral angles at the edges AB, AC,
AD, BE, CE, DE are all arccos 1/3, and those at the edges BC, BD, CD are
all 2 arccos 1/3. Then H2 is realized in the Euclidean space. Let T1, T2 be the
tetrahedra ABCD and BCDE.

Let A1, B1, C1 be the dihedral angles at BC, CD, DB of T1 and A2, B2, C2

be the dihedral angles at BC, CD, DB of T2. Let

g1 = g1(A1, B1, C1) = det Gram(T1),

g2 = g2(A2, B2, C2) = det Gram(T2).

Since T1 and T2 should be tetrahedra in the Euclidean space, we should have

g1(A1, B1, C1) = g2(A2, B2, C2) = 0. (20)

The equations corresponding to the edges are all satisfied for such Euclidean
case because the length of the ‘edges’ are all equal to 0. Actual computaion

12



show that

g1(A1, B1, C1) =
8

9

(
2

3
− cos2 A1 − cos2 B1 − cos2 C1

− cos A1 cos B1 − cos A1 cos C1 − cos B1 cos C1

)
, (21)

g2(A2, B2, C2) =
8

9

(
2

3
− cos2 A2 − cos2 B2 − cos2 C2

− cos A2 cos B2 − cos A2 cos C2 − cos B2 cos C2

)
. (22)

Now let cos A1 = 1/3 + x, cos B1 = 1/3 + y, cos C1 = 1/3 + z, then cos A2 =
1/3 − x, cos B2 = 1/3 − y, cos C2 = 1/3 − z, since A1 + A2 = B1 + B2 =
C1 + C2 = 2 arccos 1/3, and so

g1(A1, B1, C1) + g2(A2, B2, C2) = −16

9

(
x2 + y2 + z2 + x y + x z + y z

)

= −8

9

(
(x + y)2 + (z + z)2 + (y + z)2

)
≤ 0. (23)

The equalities hold for A1 = A2 = B1 = B2 = C1 = C2 = arccos 1/3. There-
fore,

g1(A1, B1, C1) + g2(A2, B2, C2) ≤ 0,

and g1(A1, B1, C1) + g2(A2, B2, C2) = 0 if x = y = z = 0, i.e. A1 = A2 = B1 =
B2 = C1 = C2 = arccos 1/3.

2.9. Tetrahedron with a hole. Here we consider a tetrahedron with a small
hole, which is homeomorphic to a tetrahedron with a removed ball. This object

A tetrahedron with a hole. A subdivion of the tetrahedron.

Figure 9. Subdivision of a tetrahedron with a hole.

is useful for donsidering about the connected sum. For simplisity, we consider
the symmetric case. Let T be a regular tegrahedron whose dihedral angles ar
all equal to θ, let T ′ be a small tetrahedron at the center of T , and we subdivide
T \ T ′ into 14 tetrahedra of three kinds of shapes as in Figure 9. Let Type I
be tetrahedra corresponding to the faces, Type II be those corresponding to
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the edges and Tye III be those corresonding to vertices. There are four Type
I tetrahedra, six Type II tetahedra and four Type III tetrahedra.

We assume that the subdivision is symmetric and the angles of each tetra-
hedron is assigned as in Figure 10. Then

A

A
A

B B

B

C
D
D

D
D

E
DD

 

 

F
F

F
G

G
G

Type I Type II Type III

Figure 10. Angles of tetrahedra in the subdivision.

A =
θ

2
, B =

2 π

3
, C = 0, D =

π

4
, E = arbituraly F =

π

3
, G =

π

2

are a solution of the length relation (15), and so if we put E = 0, then the
sum of length around an edge of T ′ is equal to E +2 G = π. Therefore, we can
glue two tetrahedra with a hole with such geometric structure at the boundary
spheres of the holes.

Remark 1. It may be natural to suppose that E = arccos−1/3. However,
to satisfy the angle relation for the connect sum, the solution E = 0 is much
better than E = arccos−1/3.

Remark 2. The signature of the determinant of the Gram matrices of Type I
tetrahera are equal to that of the original tetrahedron T . The determinant of
the Gram matrices of Type II and Type III tetrahedra are equal to 0, and so the
generalized length of the edges of these tetrahedra are equal to 0. However, by
reformulating the length relation to an algebraic relation, then such algebraic
version of the length relation is satisfied for the edge corresponding to B, D
and F, and the edge corresponding to E and G.
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3. Speculations

3.1. The geometric structure of a fluctuating tetrahedron. The geo-
metric structure of a fluctuating tetrahedron TΘ can be determined by the
determinant of the Gram matrix det Gram(TΘ). Assume that TΘ can be real-
ized in hyperbolic, Euclidean or spherical spaces. If det Gram(TΘ) is negative,
TΘ can be realized as a hyperbolic tetrahedron. If det Gram(TΘ) is positive,
TΘ can be realized as a spherical tetrahedron. If det Gram(TΘ) = 0, TΘ can
be realized as a Euclidean tetrahedron. For the actual realization of TΘ, there
are some conditions concerning to the minor determinants of Gram(TΘ) (see,
e.g. [10]).

3.2. Generalized tetrahedron. Here, we consider the case that the condi-
tions for dihedral angles to realize a tetrahedron are not satisfied. In this note,
we would like to generalize the notion of tetrahedron so that it admits any
dihedral angles.

One extension is to truncated tetrahedron in a hyperbolic space. If the
solid angle at a vertex is less than π, this vertex can be realized in none
of hyperbolic, Euclidean and spherical spaces. But it can be realized as a
truncated tetrahedron in a hyperbolic space as in [3]. By this reason, we
extend the notion of a tetrahedron to a truncated tetrahedron. Let TΘ mean
the corresponding truncated tetrahedron if TΘ can be realized as a truncated
tetrahedron in the hyperbolic space. In this case, [3] shows that the volume of
the truncated tetrahedron is also given by

Volume(TΘ) = | ImV(TΘ)|.
By this reason, we extend the notion of tetrahedron to such truncated tetra-
hedron.

Other extensions are tetrahedrons with negative volumes and edges with
negative lengths. For some fluctuating structure, it may happen that the
volume or the length of a edge is negative and so we would like to admit such
tetrahedron by giving a suitable rule for cancellation of overlapped tetrahedra
with positive and negative volumes.

With these generalizations of the notion of geometric tetrahedron, we can
give a geometric structure to any fluctuating tetrahedron from its fluctuating
structure.

3.3. Geometric structure of a fluctuating simplicial decomposition.
For a fluctuating simplicial decomposition TΘ, we can give a geometric struc-
ture to each tetrahedron of T . But these structures of two tetrahedra sharing
a face may not be compatible at this face. The lengths of an edge of this face
given by the sharing tetrahedra may not be equal in general.

3.4. Geometric structure of a stationary decomposition.

3.4.1. Homogeneous structure case. Let TΘ0 be a stationary decomposi-
tion of a 3-manifold M . If the structures of all the tetrahedra of T given by
Θ0 are hyperbolic (resp. spherical), then these structures are all compatible
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at all the faces of T . Hence these structures determine a hyperbolic (resp.
spherical) structure of M .

3.4.2. Non-homogenous structure case. Let TΘ0 be a stationary decom-
position of a 3-manifold M . Consider the case that the geometric structure of
some two tetrahedron is different. Let T1 and T2 be adjacent tetrahedra with a
common edge E. Let θ1 and θ2 be the dihedral angles of T1 and T2 respectively
corresponding to the edge E. For a stationary decomposition, we have

∂V(TΘ0)

∂θ1

=
∂V(TΘ0)

∂θ2

(24)

If the determinant of the Gram matrix of T1 is positive and that of T2 is

negative, then
∂V(TΘ0)

∂θ1

is non-negative real number and
∂V(TΘ0)

∂θ2

is
√
−1

times a real number, and the both are non-zero. This is a contradiction to
(24) and so we have the following.

Observation. The product of the determinants of the Gram matrices of two
adjacent tetrahedra is non-negative.

This observation is true if the two adjacent tetrahedra is actually realizable
in hyperbolic, Euclidean, or spherical spaces. However, it is not proved yet for
other generalized cases.

3.5. Existence of a stationary point. The volume formula (7) is given in
terms of dilogarithm functions and so its partial derivatives with respect to
the dihedral angles are given in terms of logarithm functions. Hence, the set
of equations to get a stationary point is deformed to a system of algebraic
equations by taking exponential of the original equations of indeterminates
xi

j = exp
√
−1 θj

i . Since the number of equations and the numbers of the inde-
pendent parameters are equal, this system should have at least one solution.
However, the above solution may not be a complex number of unit length. If
they are all of unit length, it is still not clear that their arguments satisfy the
edge relation, if we take the appropriate choices of branches. The sum of dihe-
dral angles around an edge may be an integral multiple of 2π instead of 2 π.
Therefore, it is not so clear that there always exist a stationary decomposition.

On the other hand, a geometric decomposition is a stationary decomposi-
tion. Hence a simplicial decomposition TΘ is realizable by a geometric de-
composition, such geometric decomposition can be obtained as a stationary
decomposition.

In this note, we generalized the notion of tetrahedron to admit negative
volume and negative lengths of edges. If any simplicial decomposition of a
3-manifold M is realizable as a geometric decomposition with such general-
ized tetrahedron, the geometric structure of M should be given by one of the
stationary decomposition.
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4. Conclusion

A method to get a geometric structure of 3-manifolds from Schänfli’s formula
is already considered by Casson. His method uses the lengths of edges as
parameters, while our method uses the dihedral angles as parameters. From
the view point of the generalized volume function, dihedral angles seems to be
very natural parameters. For degenerate case, the length may vary from 0 to
infinity, while any dihedral angle is bounded. By this reason, I expect that the
working hypothesis proposed in this note works not only for the hyperbolic
case but also for generalized case.

The obstruction for our working hypothesis is that we don’t know that there
is a solution of the algebraic version of the equations for stationary points such
that each parameters of the solution are of unit length.
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