早大理エトポロジーセミナーのお知らせ

The reduced Dijkgraaf–Witten invariant of twist knots in the Bloch group of \mathbb{F}_p

軽尾 浩晃 (Hiroaki Karuo) 京都大学数理解析研究所

日時:6月28日(金曜日)16:30~

June 28 (Fri.) 16:30 \sim

場所:早稲田大学西早稲田(理工)キャンパス

5 1 号館 1 7 階 17-06 セミナー室

Waseda University, Nishiwaseda Campus, 51st building, 17th floor, room 17-06

Abstract

For a closed oriented 3-manifold M, a discrete group G, a 3-cocycle α of G, and a representation $\rho: \pi_1(M) \to G$, the Dijkgraaf-Witten invariant is defined to be $\rho^*\alpha[M]$, where [M] is the fundamental class of M, and $\rho^*\alpha$ is the pull-back of α by ρ . We consider an equivalent invariant $\rho_*[M] \in H_3(G)$, and we also regard it as the Dijkgraaf-Witten invariant. In 2004, Neumann described the hyperbolic volume and Chern-Simons invariant of M in terms of the image of the Dijkgraaf-Witten invariant for $G = \mathrm{SL}_2\mathbb{C}$ by the Bloch-Wigner map $H_3(M) \to \mathcal{B}(\mathbb{C})$, where $\mathcal{B}(\mathbb{C})$ is the Bloch group of \mathbb{C} . Further, in 2013, Hutchinson gave a construction of the Bloch-Wigner map $H_3(\mathrm{SL}_2\mathbb{F}_p) \to \mathcal{B}(\mathbb{F}_p)$ explicitly, where p is prime, and \mathbb{F}_p is the finite field of order p.

In this talk, I calculate the reduced Dijkgraaf-Witten invariant of the complement of twist knots, where the reduced Dijkgraaf-Witten invariant is the image of the Dijkgraaf-Witten invariant for $\mathrm{SL}_2\mathbb{F}_p$ by the Bloch-Wigner map $H_3(\mathrm{SL}_2\mathbb{F}_p) \to \mathcal{B}(\mathbb{F}_p)$.

西早稲田キャンパスへのアクセス,51号館の位置は

https://www.waseda.jp/top/access/nishiwaseda-campus

を参照してください. 皆様のお越しをお待ちしております.

世話人: 村上 順 (早稲田大学基幹理工学部数学科)

e-mail: murakami@waseda.jp