�Z�~�i�[�̂��m�点
�����F �Q�O�O�T�N�P�Q�� �P�Q���i���j�ߌ�R���O�O���`�U���O�O��
�ꏊ�F ����c��w���H�w���T�P���قP�V�K�P�V�|�O�W����
�ߌ�R���O�O���`�S���O�O���@���� ���a ���i���H�� �w�U���ʌ������j
��ځFAlgebraic varieties via a deformation of the Kauffman bracket skein module
�ߌ�S���R�O���`�U���O�O���@���{�c �� ���i�����嗝�w���j
��ځFParty �㐔�̍\���Ɗ���\��
Algebraic varieties via a deformation of the Kauffman bracket skein module
���� ���a�i���H�� �w�U���ʌ������j
In this talk, we will introduce an algebraic variety in an affine space $�mathbb{C}^N$ constructed via the Kauffman bracket skein module (KBSM) of a knot exterior. One of the main ideas for the construction of the variety is that the polynomial map from $�mathbb{C}^N$ to itself can be defined by using a representation of the braid group into the endomorphisms of the KBSM of a handlebody. In fact, the algebraic variety turns out to be an invariant of knots in $S^3$. In this talk, we will try to get a better understanding of the variety by focusing on the number of its irreducible components. Then we will see a relationship of the variety with so-called the Casson-Lin invariant defined by X-.S-. Lin, which in fact inspired the above main idea, and moreover a relationship of the variety with the highest degree of the A-polynomial $A_K(M,L)$ in terms of $L$.
Party �㐔�̍\���Ɗ���\��
���{�c ��i�����嗝�w���j
k���̒u���s���r���̏���Q�� wreath �ςŕ\����镡�f���f�Q G(r,1,k) �́Ck���̃x�N�g����ԂɎ��R�ɍ�p����B���̍�p�� n �K�e���\���ϋ�Ԃւ̍�p�Ɋg���o���邪�C���̒��S���͑g�R�Q���l�C�}�̌�����ςƂ���㐔�Ƃ��ĕ\�����Ƃ��o����B���̑㐔�� Party �㐔�ƌĂԂ��Ƃɂ���B�{�u���ł́CParty �㐔�̖��O�̗R���A�������Ɗ�{�W���C����ђ����`���ɂ�����\���̍\���ɂ��Đ�������B
���H�w���ւ̃A�N�Z�X�C�T�P���ق̈ʒu��
http://web.sci.waseda.ac.jp/campus-map/
���Q�Ƃ��Ă��������D
�F�l�̂��z�������҂����Ă���܂��B
���b�l�F�@�˖{�@�B��C�@����@���@�i����c��w���H�w�������Ȋw�ȁj
e-mail: [email protected], [email protected]